Maximal amplitudes of hyperelliptic solutions of the derivative nonlinear Schrodinger equation

被引:5
作者
Wright, Otis C., III [1 ]
机构
[1] Cedarville Univ, Dept Sci & Math, 251 N Main St, Cedarville, OH 45314 USA
关键词
derivative NLS equation; hyperelliptic solutions; maximal amplitudes; upper bound; ULTRA-ELLIPTIC SOLUTIONS; QUASI-PERIODIC SOLUTIONS; FINITE-GAP SOLUTIONS; SINE-GORDON; GLOBAL EXISTENCE; WAVES; NLS; INTEGRATION;
D O I
10.1111/sapm.12299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple formula is proven for an upper bound for amplitudes of hyperelliptic (finite-gap or N-phase) solutions of the derivative nonlinear Schrodinger equation. The upper bound is sharp, viz, it is attained for some initial conditions. The method used to prove the upper bound is the same method, with necessary modifications, used to prove the corresponding bound for solutions of the focusing NLS equation (Wright OC, III. Sharp upper bound for amplitudes of hyperelliptic solutions of the focusing nonlinear Schrodinger equation. Nonlinearity. 2019;32:1929-1966).
引用
收藏
页码:327 / 356
页数:30
相关论文
共 51 条
[11]   REAL 2-ZONE SOLUTIONS OF THE SINE-GORDON EQUATION [J].
DUBROVIN, BA ;
NATANZON, SM .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1982, 16 (01) :21-33
[12]   Note on breather type solutions of the NLS as models for freak-waves [J].
Dysthe, KB ;
Trulsen, K .
PHYSICA SCRIPTA, 1999, T82 :48-52
[13]   THE GEOMETRY OF REAL SINE-GORDON WAVETRAINS [J].
ERCOLANI, NM ;
FOREST, MG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (01) :1-49
[14]  
Farkas HM., 1991, Riemann Surfaces
[15]   KAC-MOODY LIE-ALGEBRAS AND SOLITON-EQUATIONS .2. LAX EQUATIONS ASSOCIATED WITH A1 [J].
FLASCHKA, H ;
NEWELL, AC ;
RATIU, T .
PHYSICA D, 1983, 9 (03) :300-323
[16]   MULTIPHASE AVERAGING AND THE INVERSE SPECTRAL SOLUTION OF THE KORTEWEG-DEVRIES EQUATION [J].
FLASCHKA, H ;
FOREST, MG ;
MCLAUGHLIN, DW .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :739-784
[17]   SPECTRAL THEORY FOR THE PERIODIC SINE-GORDON EQUATION - A CONCRETE VIEWPOINT [J].
FOREST, MG ;
MCLAUGHLIN, DW .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (07) :1248-1277
[18]   Explicit quasi-periodic solutions of the Kaup-Newell hierarchy [J].
Geng, Xianguo ;
Li, Zhu ;
Xue, Bo ;
Guan, Liang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (02) :1097-1112
[19]  
Gesztesy F., 2008, Cambridge Studies in Advanced Mathematics, V114
[20]  
GESZTESY F, 2003, CAMBRIDGE STUDIES AD, V1, P79