Maximal amplitudes of hyperelliptic solutions of the derivative nonlinear Schrodinger equation

被引:5
作者
Wright, Otis C., III [1 ]
机构
[1] Cedarville Univ, Dept Sci & Math, 251 N Main St, Cedarville, OH 45314 USA
关键词
derivative NLS equation; hyperelliptic solutions; maximal amplitudes; upper bound; ULTRA-ELLIPTIC SOLUTIONS; QUASI-PERIODIC SOLUTIONS; FINITE-GAP SOLUTIONS; SINE-GORDON; GLOBAL EXISTENCE; WAVES; NLS; INTEGRATION;
D O I
10.1111/sapm.12299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple formula is proven for an upper bound for amplitudes of hyperelliptic (finite-gap or N-phase) solutions of the derivative nonlinear Schrodinger equation. The upper bound is sharp, viz, it is attained for some initial conditions. The method used to prove the upper bound is the same method, with necessary modifications, used to prove the corresponding bound for solutions of the focusing NLS equation (Wright OC, III. Sharp upper bound for amplitudes of hyperelliptic solutions of the focusing nonlinear Schrodinger equation. Nonlinearity. 2019;32:1929-1966).
引用
收藏
页码:327 / 356
页数:30
相关论文
共 51 条
[1]  
[Anonymous], 1984, ZAP NAUNCHN SEM LENI
[2]  
[Anonymous], 1986, IMA VOLUMES MATH ITS
[3]  
Belokolos ED, 1994, Algebro-geometric approach to nonlinear integrable equations
[4]   Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrodinger Equation [J].
Bertola, M. ;
Tovbis, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (02) :525-547
[5]   BACKLUND-TRANSFORMATIONS RELATED TO THE KAUP NEWELL SPECTRAL PROBLEM [J].
BOITI, M ;
LADDOMADA, C ;
PEMPINELLI, F ;
TU, GZ .
PHYSICA D, 1983, 9 (03) :425-432
[6]  
CHEREDNIK IV, 1980, DOKL AKAD NAUK SSSR+, V252, P1104
[7]   THE COLLISIONLESS SHOCK REGION FOR THE LONG-TIME BEHAVIOR OF SOLUTIONS OF THE KDV EQUATION [J].
DEIFT, P ;
VENAKIDES, S ;
ZHOU, X .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (02) :199-206
[8]  
Dickey LA, 2003, Advanced Series in Mathematical Physics, V26, pxii+408
[9]  
DUBROVIN BA, 1982, DOKL AKAD NAUK SSSR+, V267, P1295
[10]   THETA FUNCTIONS AND NON-LINEAR EQUATIONS [J].
DUBROVIN, BA .
RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (02) :11-92