Planar morphometrics using Teichmuller maps

被引:9
作者
Choi, Gary P. T. [1 ]
Mahadevan, L. [1 ,2 ,3 ,4 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[4] Harvard Univ, Kavli Inst Bionano Sci & Technol, Cambridge, MA 02138 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2018年 / 474卷 / 2217期
关键词
geometric morphometrics; Teichmuller maps; shape classification; community detection; WING SHAPE; DEFORMATION; MAPPINGS;
D O I
10.1098/rspa.2017.0905
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inspired by the question of quantifying wing shape, we propose a computational approach for analysing planar shapes. We first establish a correspondence between the boundaries of two planar shapes with boundary landmarks using geometric functional data analysis and then compute a landmark-matching curvature-guided Teichmuller mapping with uniform quasi-conformal distortion in the bulk. This allows us to analyse the pair-wise difference between the planar shapes and construct a similarity matrix on which we deploy methods from network analysis to cluster shapes. We deploy our method to study a variety of Drosophila wings across species to highlight the phenotypic variation between them, and Lepidoptera wings over time to study the developmental progression of wings. Our approach of combining complex analysis, computation and statistics to quantify, compare and classify planar shapes may be usefully deployed in other biological and physical systems.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Leaf growth is conformal [J].
Alim, Karen ;
Armon, Shahaf ;
Shraiman, Boris I. ;
Boudaoud, Arezki .
PHYSICAL BIOLOGY, 2016, 13 (05)
[2]  
[Anonymous], 1917, on Growth and Form
[3]   Computing large deformation metric mappings via geodesic flows of diffeomorphisms [J].
Beg, MF ;
Miller, MI ;
Trouvé, A ;
Younes, L .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2005, 61 (02) :139-157
[4]  
Blackith R.E., 1971, MULTIVARIATE MORPHOM
[5]   Phylogeny and age of diversification of the planitibia species group of the Hawaiian Drosophila [J].
Bonacum, J ;
O'Grady, PM ;
Kambysellis, M ;
DeSalle, R .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2005, 37 (01) :73-82
[7]   Deformable templates using large deformation kinematics [J].
Christensen, GE ;
Rabbitt, RD ;
Miller, MI .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (10) :1435-1447
[8]   PLASTICITY, CANALIZATION, AND DEVELOPMENTAL STABILITY OF THE DROSOPHILA WING: JOINT EFFECTS OF MUTATIONS AND DEVELOPMENTAL TEMPERATURE [J].
Debat, Vincent ;
Debelle, Allan ;
Dworkin, Ian .
EVOLUTION, 2009, 63 (11) :2864-2876
[9]   A Database of Wing Diversity in the Hawaiian Drosophila [J].
Edwards, Kevin A. ;
Doescher, Linden T. ;
Kaneshiro, Kenneth Y. ;
Yamamoto, Daisuke .
PLOS ONE, 2007, 2 (05)
[10]  
Gardiner F., 2000, QUASICONFORMAL TEICH, V76