Multicolor Broadband and Fast Photodetector Based on InGaAs-Insulator-Graphene Hybrid Heterostructure

被引:71
作者
Cao, Gaoqi [1 ]
Wang, Fang [2 ,3 ,4 ]
Peng, Meng [5 ]
Shao, Xiumei [2 ,3 ,4 ]
Yang, Bo [2 ,3 ,4 ]
Hu, Weida [2 ,3 ,4 ]
Li, Xue [2 ,3 ,4 ]
Chen, Jing [1 ]
Shan, Yabin [1 ]
Wu, Peisong [2 ,3 ,4 ]
Hu, Laigui [1 ]
Liu, Ran [1 ]
Gong, Haimei [2 ,3 ,4 ]
Cong, Chunxiao [1 ]
Qiu, Zhi-Jun [1 ]
机构
[1] Fudan Univ, Sch Informat Sci & Technol, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Transducer Technol, Shanghai 200083, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[4] Univ Chinese Acad Sci, Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
graphene; InGaAs; photodetectors; PHOTONICS;
D O I
10.1002/aelm.201901007
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Broadband light detection is crucial for a variety of optoelectronic applications in modern society. As an important-near infrared (NIR) photodetector, InGaAs PIN photodiodes demonstrate high detection performance. However, they have a limited response range because of optical absorption by the window layer or substrate. To exploit the broadband absorption capability of narrow-bandgap InGaAs, a phototransistor based on a hybrid InGaAs-SiO2-graphene heterostructure is presented. In this system, graphene serves as a transparent conducting channel to sense optical absorption in the InGaAs. In contrast to InGaAs PIN photodiodes, the hybrid InGaAs phototransistor demonstrates multicolor photodetection over a broadband wavelength range from the ultraviolet to NIR. Furthermore, it manifests a high photoresponsivity of above 10(3) A W-1 under weak light irradiation, a large external quantum efficiency, and a fast response speed of 200 kHz. The results pave the way for the development of high-performance broadband photodetectors based on mixed-dimensional heterostructures.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Tunable Graphene-Silicon Heterojunctions for Ultrasensitive Photodetection [J].
An, Xiaohong ;
Liu, Fangze ;
Jung, Yung Joon ;
Kar, Swastik .
NANO LETTERS, 2013, 13 (03) :909-916
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[3]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]  
Ellmer K, 2012, NAT PHOTONICS, V6, P808, DOI [10.1038/NPHOTON.2012.282, 10.1038/nphoton.2012.282]
[7]   Photogating in Low Dimensional Photodetectors [J].
Fang, Hehai ;
Hu, Weida .
ADVANCED SCIENCE, 2017, 4 (12)
[8]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[9]   OPTICAL AND CRYSTALLOGRAPHIC PROPERTIES AND IMPURITY INCORPORATION OF GAXIN1-XAS (0.44 LESS-THAN X LESS-THAN 0.49) GROWN BY LIQUID-PHASE EPITAXY, VAPOR-PHASE EPITAXY, AND METAL ORGANIC-CHEMICAL VAPOR-DEPOSITION [J].
GOETZ, KH ;
BIMBERG, D ;
JURGENSEN, H ;
SELDERS, J ;
SOLOMONOV, AV ;
GLINSKII, GF ;
RAZEGHI, M .
JOURNAL OF APPLIED PHYSICS, 1983, 54 (08) :4543-4552
[10]   High-performance graphene photodetector using interfacial gating [J].
Guo, Xitao ;
Wang, Wenhui ;
Nan, Haiyan ;
Yu, Yuanfang ;
Jiang, Jie ;
Zhao, Weiwei ;
Li, Jinhuan ;
Zafar, Zainab ;
Xiang, Nan ;
Ni, Zhonghua ;
Hu, Weida ;
You, Yumeng ;
Ni, Zhenhua .
OPTICA, 2016, 3 (10) :1066-1070