Disentangling the effects of nitrogen availability and soil acidification on microbial taxa and soil carbon dynamics in natural grasslands

被引:47
作者
Xing, Wen [1 ]
Lu, Xiaoming [1 ]
Ying, Jiaoyan [1 ]
Lan, Zhichun [1 ]
Chen, Dima [1 ,2 ]
Bai, Yongfei [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, 20 Nanxincun, Beijing 100093, Peoples R China
[2] China Three Gorges Univ, Coll Biol & Pharmaceut Sci, Yichang, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrogen enrichment; Nitrogen availability; Soil acidification; Ecological category; Bacterial and fungal taxa; Soil carbon chemistry; Mild vs; strong microbial C limitation; COMMUNITY STRUCTURE; BACTERIAL COMMUNITIES; RESPONSES; PH; INPUTS; FERTILIZATION; DECOMPOSITION; ENRICHMENT; DIVERSITY; PATTERNS;
D O I
10.1016/j.soilbio.2021.108495
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Although nitrogen (N) enrichment enhances both soil N availability and soil acidification, it is difficult to isolate their effects on microbial taxa that drive the soil carbon (C) dynamics under different microbial C limitation conditions in natural ecosystems. Based on long-term field N addition, field acid addition, and laboratory incubation experiments in the Inner Mongolian grassland, we disentangled the effects of increased N availability and soil acidification on relative abundance of bacterial and fungal taxa under the mild (soil incubation for 28 days) and strong microbial C limitations (soil incubation for 191 days). Bacterial and fungal taxa are grouped into four ecological categories (N sensitive, acid sensitive, N and acid sensitive, N and acid insensitive) with multiple levels of N addition. In the context of the mild microbial C limitation, increased N availability promoted the relative abundance of the fungal class Eurotiomycetes (N positive sensitivity) under the low-medium levels of N addition, with an associated decrease in soil labile carbonyl C content. Conversely, increased N availability reduced the relative abundance of fungal class Sordariomycetes (N negative sensitivity) and bacterial gene copies (N and acid negative sensitivity) under the high levels of N addition, with associated increases in labile O-alkyl C and di-O-alkyl C content, making soil C more labile. In the context of the strong microbial C limitation, increased soil acidification promoted the abundance of acidophilous fungal classes Sordariomycetes and Eurotiomycetes under the low-medium levels of N addition, with an associated decrease in soil labile carbonyl C content. However, increased N availability promoted the relative abundance of the bacterial phylum Thaumarchaeota (N positive sensitivity equal to acid negative sensitivity), with associated low labile O-alkyl C and di-O-alkyl C content, leaving C chemistry more resistant. By applying the ecological category concept to soil microbes, our findings highlight that the N enrichment-induced shifts in abundance of N- and/or acid-sensitive categories are tightly associated with the changes in soil organic carbon (SOC) chemical composition, and the relationship between microbial function groups and SOC chemistry varied substantially under the mild versus strong microbial C limitations.
引用
收藏
页数:13
相关论文
共 67 条
[1]   Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil [J].
Aciego Pietri, J. C. ;
Brookes, P. C. .
SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (07) :1396-1405
[2]   Nitrogen limitation of decomposition and decay: How can it occur? [J].
Averill, Colin ;
Waring, Bonnie .
GLOBAL CHANGE BIOLOGY, 2018, 24 (04) :1417-1427
[3]   Ecosystem stability and compensatory effects in the Inner Mongolia grassland [J].
Bai, YF ;
Han, XG ;
Wu, JG ;
Chen, ZZ ;
Li, LH .
NATURE, 2004, 431 (7005) :181-184
[4]   Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands [J].
Bai, Yongfei ;
Wu, Jianguo ;
Clark, Christopher M. ;
Naeem, Shahid ;
Pan, Qingmin ;
Huang, Jianhui ;
Zhang, Lixia ;
Han, Xingguo .
GLOBAL CHANGE BIOLOGY, 2010, 16 (01) :358-372
[5]   Assessing the extent of decomposition of natural organic materials using solid-state C-13 NMR spectroscopy [J].
Baldock, JA ;
Oades, JM ;
Nelson, PN ;
Skene, TM ;
Golchin, A ;
Clarke, P .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 1997, 35 (05) :1061-1083
[6]   Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses [J].
Bhattacharyya, Ranjan ;
Rabbi, Sheikh M. F. ;
Zhang, Yaqi ;
Young, Iain M. ;
Jones, Andrew R. ;
Dennis, Paul G. ;
Menzies, Neal W. ;
Kopittke, Peter M. ;
Dalal, Ram C. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 778
[7]   Forward selection of explanatory variables [J].
Blanchet, F. Guillaume ;
Legendre, Pierre ;
Borcard, Daniel .
ECOLOGY, 2008, 89 (09) :2623-2632
[8]   Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios [J].
Bonanomi, Giuliano ;
Incerti, Guido ;
Giannino, Francesco ;
Mingo, Antonio ;
Lanzotti, Virginia ;
Mazzoleni, Stefano .
SOIL BIOLOGY & BIOCHEMISTRY, 2013, 56 :40-48
[9]  
Canty A., 2019, BOOT BOOTSTRAP R S P
[10]   Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Lozupone, Catherine A. ;
Turnbaugh, Peter J. ;
Fierer, Noah ;
Knight, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 :4516-4522