Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics

被引:106
作者
Chen, Liang [1 ]
Shao, Hezhu [1 ]
Zhou, Xufeng [1 ]
Liu, Guoqiang [1 ]
Jiang, Jun [1 ]
Liu, Zhaoping [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
POSITIVE ELECTRODE MATERIAL; SODIUM-ION BATTERIES; AQUEOUS SODIUM; AB-INITIO; ENERGY-STORAGE; ANODE MATERIAL; HIGH-CAPACITY; LITHIUM; CATHODE; STABILITY;
D O I
10.1038/ncomms11982
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rechargeable aqueous metal-ion batteries made from non-flammable and low-cost materials offer promising opportunities in large-scale utility grid applications, yet low voltage and energy output, as well as limited cycle life remain critical drawbacks in their electrochemical operation. Here we develop a series of high-voltage aqueous metal-ion batteries based on 'M+/N+-dual shuttles' to overcome these drawbacks. They utilize open-framework indium hexacyanoferrates as cathode materials, and TiP2O7 and NaTi2(PO4)(3) as anode materials, respectively. All of them possess strong rate capability as ultra-capacitors. Through multiple characterization techniques combined with ab initio calculations, water-mediated cation intercalation of indium hexacyanoferrate is unveiled. Water is supposed to be co-inserted with Li+ or Na+, which evidently raises the intercalation voltage and reduces diffusion kinetics. As for K+, water is not involved in the intercalation because of the channel space limitation.
引用
收藏
页数:10
相关论文
共 43 条
[1]   Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J].
Aydinol, MK ;
Kohan, AF ;
Ceder, G ;
Cho, K ;
Joannopoulos, J .
PHYSICAL REVIEW B, 1997, 56 (03) :1354-1365
[2]   Aqueous Batteries Based on Mixed Monovalence Metal Ions: A New Battery Family [J].
Chen, Liang ;
Zhang, Leyuan ;
Zhou, Xufeng ;
Liu, Zhaoping .
CHEMSUSCHEM, 2014, 7 (08) :2295-2302
[3]   New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes [J].
Chen, Liang ;
Gu, Qingwen ;
Zhou, Xufeng ;
Lee, Saixi ;
Xia, Yonggao ;
Liu, Zhaoping .
SCIENTIFIC REPORTS, 2013, 3
[4]   Metal hexacyanoferrates: Electrosynthesis, in situ characterization, and applications [J].
de Tacconi, NR ;
Rajeshwar, K ;
Lezna, RO .
CHEMISTRY OF MATERIALS, 2003, 15 (16) :3046-3062
[5]   1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries [J].
Deng, C. ;
Zhang, S. ;
Dong, Z. ;
Shang, Y. .
NANO ENERGY, 2014, 4 :49-55
[6]   ELECTROCHEMISTRY OF INDIUM HEXACYANOFERRATE FILM MODIFIED ELECTRODES [J].
DONG, SJ ;
JIN, Z .
ELECTROCHIMICA ACTA, 1989, 34 (07) :963-968
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   ELECTROCHROMISM IN THE MIXED-VALENCE HEXACYANIDES .1. VOLTAMMETRIC AND SPECTRAL STUDIES OF THE OXIDATION AND REDUCTION OF THIN-FILMS OF PRUSSIAN BLUE [J].
ELLIS, D ;
ECKHOFF, M ;
NEFF, VD .
JOURNAL OF PHYSICAL CHEMISTRY, 1981, 85 (09) :1225-1231
[9]   Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties [J].
Islam, M. Saiful ;
Fisher, Craig A. J. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (01) :185-204
[10]   Aqueous Rechargeable Li and Na Ion Batteries [J].
Kim, Haegyeom ;
Hong, Jihyun ;
Park, Kyu-Young ;
Kim, Hyungsub ;
Kim, Sung-Wook ;
Kang, Kisuk .
CHEMICAL REVIEWS, 2014, 114 (23) :11788-11827