In this paper, the impulsive Cohen-Grossberg neural network with unbounded discrete time-varying delays is considered. By using the analysis method and inequality technique, several sufficient conditions are obtained to ensure the global exponential stability of the addressed neural network. These results generalize the existing relevant stability results. Two examples with simulations are given to show the effectiveness of the obtained results.
机构:
Flinders Univ S Australia, Sch Informat & Engn, Adelaide, SA 5001, AustraliaFlinders Univ S Australia, Sch Informat & Engn, Adelaide, SA 5001, Australia
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Huang, Chuangxia
Huang, Lihong
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
机构:
Flinders Univ S Australia, Sch Informat & Engn, Adelaide, SA 5001, AustraliaFlinders Univ S Australia, Sch Informat & Engn, Adelaide, SA 5001, Australia
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Huang, Chuangxia
Huang, Lihong
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China