A non-abelian Stickelberger theorem

被引:11
作者
Burns, David [1 ]
Johnston, Henri [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Cambridge, St Johns Coll, Cambridge CB2 1TP, England
关键词
equivariant L-values; class groups; TAMAGAWA NUMBER CONJECTURE; VALUES; UNITS; COHOMOLOGY; EXTENSIONS; INTEGERS; FIELDS;
D O I
10.1112/S0010437X10004859
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L/k be a finite Galois extension of number fields with Galois group G. For every odd prime p satisfying certain mild technical hypotheses, we use values of Artin L-functions to construct an element in the centre of the group ring Z((p)) [G] that annihilates the p-part of the class group of L.
引用
收藏
页码:35 / 55
页数:21
相关论文
共 23 条
[21]  
Ritter J, 1996, COMPOS MATH, V102, P147
[23]  
Tate John, 1984, Progress in Mathematics, V47