A non-abelian Stickelberger theorem

被引:11
作者
Burns, David [1 ]
Johnston, Henri [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Cambridge, St Johns Coll, Cambridge CB2 1TP, England
关键词
equivariant L-values; class groups; TAMAGAWA NUMBER CONJECTURE; VALUES; UNITS; COHOMOLOGY; EXTENSIONS; INTEGERS; FIELDS;
D O I
10.1112/S0010437X10004859
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L/k be a finite Galois extension of number fields with Galois group G. For every odd prime p satisfying certain mild technical hypotheses, we use values of Artin L-functions to construct an element in the centre of the group ring Z((p)) [G] that annihilates the p-part of the class group of L.
引用
收藏
页码:35 / 55
页数:21
相关论文
共 23 条
[1]  
Bley W, 2006, DOC MATH, V11, P73
[2]  
BREUNING M, 2004, THESIS KINGS COLLEGE
[3]   Leading terms of Artin L-functions at s=0 and s=1 [J].
Breuning, Manuel ;
Burns, David .
COMPOSITIO MATHEMATICA, 2007, 143 (06) :1427-1464
[4]  
Burns D, 2004, CRM PROC & LECT NOTE, V36, P35
[5]   Tamagawa numbers for motives with (noncommutative) coefficients, II [J].
Burns, D ;
Flach, M .
AMERICAN JOURNAL OF MATHEMATICS, 2003, 125 (03) :475-512
[6]   Equivariant Tamagawa numbers and Galois module theory I [J].
Burns, D .
COMPOSITIO MATHEMATICA, 2001, 129 (02) :203-237
[7]  
BURNS D, 2009, DERIVATIVES ARTIN L
[8]  
Burns D, 2008, MATH RES LETT, V15, P841
[9]  
Burns M., 2001, Doc. Math., V6, P501
[10]   NEGATIVE INTEGRAL VALUES OF ZETA-FUNCTIONS AND P-ADIC ZETA-FUNCTIONS [J].
CASSOUNOGUES, P .
INVENTIONES MATHEMATICAE, 1979, 51 (01) :29-59