An armor-like artificial solid electrolyte interphase layer for high performance lithium-sulfur batteries

被引:15
作者
Cui, Can [1 ]
Zhang, Rupeng [1 ]
Fu, Chuankai [1 ]
Sun, Baoyu [1 ]
Wang, Yang [1 ]
Huo, Hua [1 ]
Ma, Yulin [1 ]
Gao, Yunzhi [1 ]
Yin, Geping [1 ]
Zuo, Pengjian [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China
关键词
Boric acid group; Surface protection; Stable lithium anode; High cycling performance; Lithium-sulfur batteries; ANODE; MORPHOLOGY; INTERFACE; CHEMISTRY; GRAPHENE; LINO3;
D O I
10.1016/j.apmt.2021.101108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As one of the most promising next generation energy storage systems, lithium sulfur (Li-S) batteries with high specific energy density have received extensive attention due to the advantages of resource abundance, low toxicity and super high specific energy density (>2500 Wh kg(-1)). However, the unfavorable shuttle effect caused by dissolved polysulfides during charging/discharging processes results in low Coulombic efficiency (CE), poor interfacial stability, uncontrolled lithium dendrite growth and rapid capacity degradation, hindering the practical application of Li-S batteries. Herein, a highly stable armor-like artificial solid electrolyte interphase (SEI) layer for Li metal anode was formed based on the spontaneous interaction between Li metal and 4-chlorophenylboronic acid (CPB). First, this artificial SEI layer can avoid the direct contact between Li anode and electrolyte, therefore eliminating the corrosion reaction between Li metal anode and polysulfides in electrolyte. Second, the artificial SEI layer with high durability can effectively suppress lithium dendrite growth and stabilize Li anode/electrolyte interface. As consequence, the Li/Li symmetric cells show the lengthened cycling life over 500 h with steady and low polarization voltage under the condition of 1.0 mA cm(-2) for 1.0 mAh cm(-2). Furthermore, the Li-S cells with modified Li metal anode deliver superior cycling performance and higher CE at various sulfur loadings and rate conditions than those of the cells with pristine Li. This work highlights the key role of artificial SEI layer on stabilizing the Li anode, providing a new pathway for Li metal protection in Li-S batteries development. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
[31]   A gel polymer electrolyte functionalized separator for high-performance lithium-sulfur batteries [J].
Fang, Zhan ;
Tan, Jian ;
Ma, Longli ;
Yi, Pengshu ;
Lu, Wenyi ;
Xu, Yuyu ;
Ye, Mingxin ;
Shen, Jianfeng .
NANOSCALE, 2024, 16 (38) :17934-17941
[32]   Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries [J].
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
ACS NANO, 2015, 9 (06) :6373-6382
[33]   Elongating the cycle life of lithium metal batteries in carbonate electrolyte with gradient solid electrolyte interphase layer [J].
Lu, Wei ;
Sun, Liqun ;
Zhao, Yang ;
Wu, Tong ;
Cong, Lina ;
Liu, Jia ;
Liu, Yulong ;
Xie, Haiming .
ENERGY STORAGE MATERIALS, 2021, 34 :241-249
[34]   The Radical Pathway Based on a Lithium-Metal-Compatible High-Dielectric Electrolyte for Lithium-Sulfur Batteries [J].
Zhang, Ge ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Chen, Xiang ;
Zhao, Li-Da ;
Li, Peng ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (51) :16732-16736
[35]   Solid Catholyte with Regulated Interphase Redox for All-Solid-State Lithium-Sulfur Batteries [J].
Shen, Kaier ;
Shi, Weize ;
Song, Huimin ;
Zheng, Chenxi ;
Yan, Yingjing ;
Hong, Xufeng ;
Liu, Xu ;
An, Yun ;
Li, Yuanrui ;
Ye, Fei ;
He, Mengxue ;
Ye, Guo ;
Ma, Chenyan ;
Zheng, Lei ;
Gao, Peng ;
Pang, Quanquan .
ADVANCED MATERIALS, 2025, 37 (11)
[36]   Solid/Solid Interfacial Architecturing of Solid Polymer Electrolyte-Based All-Solid-State Lithium-Sulfur Batteries by Atomic Layer Deposition [J].
Fan, Zengjie ;
Ding, Bing ;
Zhang, Tengfei ;
Lin, Qingyang ;
Malgras, Victor ;
Wang, Jie ;
Dou, Hui ;
Zhang, Xiaogang ;
Yamauchi, Yusuke .
SMALL, 2019, 15 (46)
[37]   High performance bimetal sulfides for lithium-sulfur batteries [J].
Lu, Xianlu ;
Zhang, Qingfeng ;
Wang, Jue ;
Chen, Suhua ;
Ge, Junmin ;
Liu, Zhaomeng ;
Wang, Longlu ;
Ding, Hongbo ;
Gong, Decai ;
Yang, Hongguan ;
Yu, Xinzhi ;
Zhu, Jian ;
Lu, Bingan .
CHEMICAL ENGINEERING JOURNAL, 2019, 358 :955-961
[38]   AlF3 coating as sulfur immobilizers in cathode material for high performance lithium-sulfur batteries [J].
Luo, Zhenya ;
Lei, Weixin ;
Wang, Xiao ;
Pan, Junan ;
Pan, Yong ;
Xia, Shuang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 812
[39]   Calculated Reduction Potentials of Electrolyte Species in Lithium-Sulfur Batteries [J].
Han, Jaebeom ;
Zheng, Yu ;
Guo, Ningxuan ;
Balbuena, Perla B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (38) :20654-20670
[40]   An in situ fabricated multifunctional gel electrolyte for lithium-sulfur batteries [J].
Wang, Hui-Min ;
Fu, En-De ;
Li, Guo-Ran ;
Liu, Sheng ;
Gao, Xue-Ping .
JOURNAL OF POWER SOURCES, 2023, 581