ZERO, FINITE RANK, AND COMPACT BIG TRUNCATED HANKEL OPERATORS ON MODEL SPACES

被引:9
作者
Ma, Pan [1 ]
Yan, Fugang [2 ]
Zheng, Dechao [3 ,4 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Chongqing Univ, Sch Math & Stat, Chongqing 401331, Peoples R China
[3] Chongqing Univ, Ctr Math, Chongqing 401331, Peoples R China
[4] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
Hardy space; Hankel operator; Model spaces; Big truncated Hankel operator; TOEPLITZ-OPERATORS; POLYDISK; PRODUCTS; THEOREM; TERMS;
D O I
10.1090/proc/14179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain sufficient and necessary conditions for big truncated Hankel operators on model spaces to be zero, or of finite rank or compact. Our main tools are the properties of Hardy Hankel operators and function algebras.
引用
收藏
页码:5235 / 5242
页数:8
相关论文
共 26 条
[1]  
Axler S., 1978, Integr. Equ. Oper. Theory, V1, P285, DOI [10.1007/BF01682841, DOI 10.1007/BF01682841]
[2]   Fredholmness and Compactness of Truncated Toeplitz and Hankel Operators [J].
Bessonov, R. V. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (04) :451-467
[3]   TRUNCATED TOEPLITZ OPERATORS OF FINITE RANK [J].
Bessonov, R. V. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (04) :1301-1313
[4]  
Brown A., 1964, J. Reine. Angew. Math, V213, P89
[5]   NEHARI AND NEVANLINNA-PICK PROBLEMS AND HOLOMORPHIC EXTENSIONS IN THE POLYDISK IN TERMS OF RESTRICTED BMO [J].
COTLAR, M ;
SADOSKY, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 124 (01) :205-210
[6]   MULTIPLIERS BETWEEN INVARIANT SUBSPACES OF THE BACKWARD SHIFT [J].
CROFOOT, RB .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 166 (02) :225-246
[7]  
DOUGLAS R.G, 1972, Pure and Applied Mathematics, V49
[8]   Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures [J].
Ferguson, SH ;
Sadosky, C .
JOURNAL D ANALYSE MATHEMATIQUE, 2000, 81 (1) :239-267
[9]  
Garcia S. R., 2016, CAMBRIDGE STUDIES AD, V148
[10]  
Garnett John B., 2007, GRADUATE TEXTS MATH, V236