Model selection for regularized least-squares algorithm in learning theory

被引:127
|
作者
De Vito, E
Caponnetto, A
Rosasco, L
机构
[1] Univ Modena, Dipartimento Matemat, I-41100 Modena, Italy
[2] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy
[3] Univ Genoa, DISI, I-16146 Genoa, Italy
[4] INFM, Sez Genova, I-16146 Genoa, Italy
关键词
model selection; optimal choice of parameters; regularized least-squares algorithm;
D O I
10.1007/s10208-004-0134-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the problem of model selection for learning algorithms depending on a continuous parameter. We propose a model selection procedure based on a worst-case analysis and on a data-independent choice of the parameter. For the regularized least-squares algorithm we bound the generalization error of the solution by a quantity depending on a few known constants and we show that the corresponding model selection procedure reduces to solving a bias-variance problem. Under suitable smoothness conditions on the regression function, we estimate the optimal parameter as a function of the number of data and we prove that this choice ensures consistency of the algorithm.
引用
收藏
页码:59 / 85
页数:27
相关论文
共 50 条
  • [41] A Comparison of Sparse Partial Least Squares and Elastic Net in Wavelength Selection on NIR Spectroscopy Data
    Fu, Guang-Hui
    Zong, Min-Jie
    Wang, Feng-Hua
    Yi, Lun-Zhao
    INTERNATIONAL JOURNAL OF ANALYTICAL CHEMISTRY, 2019, 2019
  • [42] Machine Learning Automatic Model Selection Algorithm for Oceanic Chlorophyll-a Content Retrieval
    Blix, Katalin
    Eltoft, Torbjorn
    REMOTE SENSING, 2018, 10 (05):
  • [43] Model selection in reinforcement learning
    Amir-massoud Farahmand
    Csaba Szepesvári
    Machine Learning, 2011, 85 : 299 - 332
  • [44] Model selection in reinforcement learning
    Farahmand, Amir-massoud
    Szepesvari, Csaba
    MACHINE LEARNING, 2011, 85 (03) : 299 - 332
  • [45] The Least Energy Criterion LEC and Its Application in Model Selection
    Qiao, Mu
    Wang, Peng
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ELECTRONIC TECHNOLOGY, 2015, 6 : 443 - 447
  • [46] A genetic algorithm for graphical model selection
    Irene Poli
    Alberto Roverato
    Journal of the Italian Statistical Society, 1998, 7 (2) : 197 - 208
  • [47] A nonlinear least squares quasi-Newton strategy for LP-SVR hyper-parameters selection
    Rivas-Perea, Pablo
    Cota-Ruiz, Juan
    Rosiles, Jose-Gerardo
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2014, 5 (04) : 579 - 597
  • [48] Least absolute deviation estimator based consistent model selection in regression
    Shende, K. S.
    Kashid, D. N.
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2019, 26 (03) : 273 - 293
  • [49] The Racing Algorithm: Model Selection for Lazy Learners
    Oden Maron
    Andrew W. Moore
    Artificial Intelligence Review, 1997, 11 : 193 - 225
  • [50] Algorithm of Model Selection in Decision Support System
    Feng, Yanghe
    Dai, Chaofan
    Deng, Su
    ITCS: 2009 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, PROCEEDINGS, VOL 2, PROCEEDINGS, 2009, : 334 - 337