Model selection for regularized least-squares algorithm in learning theory

被引:127
|
作者
De Vito, E
Caponnetto, A
Rosasco, L
机构
[1] Univ Modena, Dipartimento Matemat, I-41100 Modena, Italy
[2] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy
[3] Univ Genoa, DISI, I-16146 Genoa, Italy
[4] INFM, Sez Genova, I-16146 Genoa, Italy
关键词
model selection; optimal choice of parameters; regularized least-squares algorithm;
D O I
10.1007/s10208-004-0134-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the problem of model selection for learning algorithms depending on a continuous parameter. We propose a model selection procedure based on a worst-case analysis and on a data-independent choice of the parameter. For the regularized least-squares algorithm we bound the generalization error of the solution by a quantity depending on a few known constants and we show that the corresponding model selection procedure reduces to solving a bias-variance problem. Under suitable smoothness conditions on the regression function, we estimate the optimal parameter as a function of the number of data and we prove that this choice ensures consistency of the algorithm.
引用
收藏
页码:59 / 85
页数:27
相关论文
共 50 条
  • [21] Distribution theory of the least squares averaging estimator
    Liu, Chu-An
    JOURNAL OF ECONOMETRICS, 2015, 186 (01) : 142 - 159
  • [22] Model selection through a statistical analysis of the minimum of a weighted least squares cost function
    de Brauwere, A
    De Ridder, F
    Pintelon, R
    Elskens, M
    Schoukens, J
    Baeyens, W
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 76 (02) : 163 - 173
  • [23] Pattern classification with mixtures of weighted least-squares support vector machine experts
    Lima, Clodoaldo A. M.
    Coelho, Andre L. V.
    Von Zuben, Fernando J.
    NEURAL COMPUTING & APPLICATIONS, 2009, 18 (07) : 843 - 860
  • [24] Model validation and selection for personalized medicine using dynamic-weighted ordinary least squares
    Wallace, Michael P.
    Moodie, Erica E. M.
    Stephens, David A.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (04) : 1641 - 1653
  • [25] Model selection using information criteria under a new estimation method: least squares ratio
    Deniz, Eylem
    Akbilgic, Oguz
    Howe, J. Andrew
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (09) : 2043 - 2050
  • [26] Model selection for least squares support vector regressions based on small-world strategy
    Mao, Wentao
    Yan, Guirong
    Dong, Longlei
    Hu, Dike
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3227 - 3237
  • [27] Simultaneous Clustering and Model Selection: Algorithm, Theory and Applications
    Li, Zhuwen
    Cheong, Loong-Fah
    Yang, Shuoguang
    Toh, Kim-Chuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (08) : 1964 - 1978
  • [28] Variable selection in spatial regression via penalized least squares
    Wang, Haonan
    Zhu, Jun
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 607 - 624
  • [29] Choice of V for V-Fold Cross-Validation in Least-Squares Density Estimation
    Arlot, Sylvain
    Lerasle, Matthieu
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [30] Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM)
    Danks, Nicholas P.
    Sharma, Pratyush N.
    Sarstedt, Marko
    JOURNAL OF BUSINESS RESEARCH, 2020, 113 : 13 - 24