Numerical simulations of fast and slow coronal mass ejections

被引:157
作者
Toeroek, T.
Kliem, B.
机构
[1] UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[2] Inst Astrophys, D-14482 Potsdam, Germany
[3] Kiepenheuer Inst Sonnenphys, D-79104 Freiberg, Germany
基金
英国科学技术设施理事会;
关键词
Sun : corona; Sun : coronal mass ejections (CMEs); Sun : filaments; Sun : flares; Sun : magnetic fields;
D O I
10.1002/asna.200710795
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Solar coronal mass ejections(CMEs) show a large variety in their kinematic properties. CMEs originating in active regions and accompanied by strong flares are usually faster and accelerated more impulsively than CMEs associated with filament eruptions outside active regions and weak flares. It has been proposed more than two decades ago that there are two separate types of CMEs, fast (impulsive) CMEs and slow (gradual) CMEs. However, this concept may not be valid, since the large data sets acquired in recent years do not show two distinct peaks in the CME velocity distribution and reveal that both fast and slow CMEs can be accompanied by both weak and strong flares. We present numerical simulations which confirm our earlier analytical result that a flux-rope CME model permits describing fast and slow CMEs in a unified manner. We consider a force-free coronal magnetic flux rope embedded in the potential field of model bipolar and quadrupolar active regions. The eruption is driven by the torus instability which occurs if the field overlying the flux rope decreases sufficiently rapidly with height. The acceleration profile depends on the steepness of this field decrease, corresponding to fast CMEs for rapid decrease, as is typical of active regions, and to slow CMEs for gentle decrease, as is typical of the quiet Sun. Complex (quadrupolar) active regions lead to the fastest CMEs. (c) 2007 WILEY-VCH Verlag GmbH&Co. KGaA. Weinhcim.
引用
收藏
页码:743 / 746
页数:4
相关论文
共 16 条
[1]  
Bateman G., 1978, MHD Instabilities
[2]   The flux-rope scaling of the acceleration of coronal mass ejections and eruptive prominences [J].
Chen, J. ;
Marque, C. ;
Vourlidas, A. ;
Krall, J. ;
Schuck, P. W. .
ASTROPHYSICAL JOURNAL, 2006, 649 (01) :452-463
[3]   Acceleration of coronal mass ejections [J].
Chen, J ;
Krall, J .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A11)
[4]   Torus instability [J].
Kliem, B. ;
Torok, T. .
PHYSICAL REVIEW LETTERS, 2006, 96 (25)
[5]   Erupting solar magnetic flux ropes: Theory and observation [J].
Krall, J ;
Chen, J ;
Duffin, RT ;
Howard, RA ;
Thompson, BJ .
ASTROPHYSICAL JOURNAL, 2001, 562 (02) :1045-1057
[6]   THE KINEMATICS OF SOLAR INNER CORONAL TRANSIENTS [J].
MACQUEEN, RM ;
FISHER, RR .
SOLAR PHYSICS, 1983, 89 (01) :89-102
[7]  
SCHRIJVER CJ, 2007, UNPUB APJ
[8]   Continuous tracking of coronal outflows: Two kinds of coronal mass ejections [J].
Sheeley, NR ;
Walters, JH ;
Wang, YM ;
Howard, RA .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A11) :24739-24767
[9]  
Titov VS, 1999, ASTRON ASTROPHYS, V351, P707
[10]   Confined and ejective eruptions of kink-unstable flux ropes [J].
Török, T ;
Kliem, B .
ASTROPHYSICAL JOURNAL, 2005, 630 (01) :L97-L100