Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials

被引:4
作者
Horozov, Emil [1 ,2 ]
机构
[1] Univ Sofia, Dept Math & Informat, 5 J Bourchier Blvd, BU-1126 Sofia, Bulgaria
[2] Bulg Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Block 8, Sofia 1113, Bulgaria
关键词
vector orthogonal polynomials; finite recurrence relations; bispectral problem; Bochner theorem; COMMUTATIVE ALGEBRAS; THEOREM;
D O I
10.3842/SIGMA.2016.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructed. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary vector orthogonal polynomial systems which are eigenfunctions of a differential operator into other systems of this type.
引用
收藏
页数:14
相关论文
共 36 条
[1]  
Appell P., 1880, Ann. Sci. Ecole. Norm. Sup, V9, P119, DOI [10.24033/asens.186, DOI 10.24033/ASENS.186]
[2]   Hermite-Pade approximations and multiple orthogonal polynomial ensembles [J].
Aptekarev, A. I. ;
Kuijlaars, A. B. J. .
RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (06) :1133-1199
[3]   Multiple orthogonal polynomials [J].
Aptekarev, AI .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :423-447
[4]   Multiple orthogonal polynomials for classical weights [J].
Aptekarev, AI ;
Branquinho, A ;
Van Assche, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) :3887-3914
[5]   Semiclassical multiple orthogonal polynomials and the properties of Jacobi-Bessel polynomials [J].
Aptekarev, AI ;
Marcellan, F ;
Rocha, IA .
JOURNAL OF APPROXIMATION THEORY, 1997, 90 (01) :117-146
[6]   General methods for constructing bispectral operators [J].
Bakalov, B ;
Horozov, E ;
Yakimov, M .
PHYSICS LETTERS A, 1996, 222 (1-2) :59-66
[7]   A generalized hypergeometric d-orthogonal polynomial set [J].
Ben Cheikh, Y ;
Douak, K .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (05) :349-354
[8]   On the classical d-orthogonal polynomials defined by certain generating functions, II [J].
Ben Cheikh, Y ;
Douak, K .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2001, 8 (04) :591-605
[9]   Random Matrix Model with External Source and a Constrained Vector Equilibrium Problem [J].
Bleher, P. ;
Delvaux, S. ;
Kuijlaars, A. B. J. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) :116-160
[10]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736