Analytic parametrization of three-dimensional bodies of constant width

被引:17
作者
Bayen, T. [1 ]
Lachand-Robert, T. [1 ]
Oudet, E. [1 ]
机构
[1] Univ Savoie, Math Lab, F-73376 Le Bourget Du Lac, France
关键词
Analytic Parametrization; Convex Body; Median Surface; Constant Width; Isothermal Parametrization;
D O I
10.1007/s00205-007-0060-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a complete analytic parametrization of constant three-dimensional width bodies based on the median surface: more precisely, we define a bijection between spaces of functions and constant width bodies. We compute simple geometrical quantities like the volume and the surface area in terms of those functions. As a corollary we give a new algebraic proof of Blaschke's formula. Finally, we derive weak optimality conditions for convex bodies which minimize the volume among constant width bodies.
引用
收藏
页码:225 / 249
页数:25
相关论文
共 10 条
  • [1] Convex fields of constant data in small amounts
    Blaschke, W
    [J]. MATHEMATISCHE ANNALEN, 1915, 76 : 504 - 513
  • [2] Bonnesen T., 1987, THEORY CONVEX BODIES, p[135, 15]
  • [3] Chakerian GD., 1983, Convexity and Its Applications
  • [4] COHNVOSSEN S, 1952, GEOMETRY IMAGINATION
  • [5] DUGUNDJI J, 1982, MONOGRAITIE MATEMATY, V61
  • [6] Harrell E. M., 2002, J GEOM ANAL, P81
  • [7] HARRELL EM, CALCULATIONS CONVEX
  • [8] Lachand-Robert T., BODIES CONSTANT WIDT
  • [9] Schneider R., 1993, CONVEX BODIES BRUNN
  • [10] YAGLOW IM, 1961, CONVEX FIGURES