Quantum-corrected drift-diffusion models for transport in semiconductor devices

被引:85
作者
de Falco, C
Gatti, E
Lacaita, AL
Sacco, R
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[3] Politecn Milan, Dipartimento Elettron & Informat, I-20133 Milan, Italy
关键词
quantum and drift-diffusion models; density-gradient; Schrodinger-Poisson; functional iterations; finite element method; nanoscale semiconductor devices;
D O I
10.1016/j.jcp.2004.10.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DID model named Schrodinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative Solution of the DID system. We discuss the finite element discretization of the various differential Subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:533 / 561
页数:29
相关论文
共 43 条
  • [1] ABDALLAH NB, 2002, C R ACAD SCI PARIS 1, V335, P1007
  • [2] Adams R., 1975, Sobolev space
  • [3] ANCONA M, 1987, PHYS REV B, V35, P580
  • [4] Ancona MG, 2000, IEEE T ELECTRON DEV, V47, P2310, DOI 10.1109/16.887013
  • [5] QUANTUM CORRECTION TO THE EQUATION OF STATE OF AN ELECTRON-GAS IN A SEMICONDUCTOR
    ANCONA, MG
    IAFRATE, GJ
    [J]. PHYSICAL REVIEW B, 1989, 39 (13): : 9536 - 9540
  • [6] [Anonymous], EW J NUMER MATH
  • [7] Bank R. E., 1998, Computing and Visualization in Science, V1, P123, DOI 10.1007/s007910050012
  • [8] BANK RE, 1983, IEEE T ELECTRON DEV, V30, P1031, DOI 10.1109/T-ED.1983.21257
  • [9] On the stationary quantum drift-diffusion model
    Ben Abdallah, N
    Unterreiter, A
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02): : 251 - 275
  • [10] A discretization scheme for an extended drift-diffusion model including trap-assisted phenomena
    Bosisio, F
    Micheletti, S
    Sacco, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 159 (02) : 197 - 212