Deep Reinforcement Learning-Based Resource Allocation for mm-Wave Dense 5G Networks

被引:0
作者
Martyna, Jerzy [1 ]
机构
[1] Jagiellonian Univ, Inst Comp Sci, Fac Math & Comp Sci, ul Prof S Lojasiewicza 6, PL-30348 Krakow, Poland
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2022 | 2022年 / 13469卷
关键词
D O I
10.1007/978-3-031-15471-3_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In microwave technology, directional beams are used for the propagation of radio waves. Nevertheless, significant errors occur in localizing the receiver. The paper presents the method for radio resource allocation and beam management based on the double deep Q-learning algorithm. Simulation studies confirm that the proposed method significantly improves the efficiency of the millimeter 5G network.
引用
收藏
页码:298 / 307
页数:10
相关论文
共 50 条
[21]   Caching and Computing Resource Allocation in Cooperative Heterogeneous 5G Edge Networks Using Deep Reinforcement Learning [J].
Bose, Tushar ;
Chatur, Nilesh ;
Baberwal, Sonil ;
Adhya, Aneek .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (04) :4161-4178
[22]   Resource allocation for UAV-assisted 5G mMTC slicing networks using deep reinforcement learning [J].
Rohit Kumar Gupta ;
Saubhik Kumar ;
Rajiv Misra .
Telecommunication Systems, 2023, 82 :141-159
[23]   Deep Reinforcement Learning Based Resource Allocation with Radio Remote Head Grouping and Vehicle Clustering in 5G Vehicular Networks [J].
Park, Hyebin ;
Lim, Yujin .
ELECTRONICS, 2021, 10 (23)
[24]   Planar Wideband mm-Wave Antennas for mm-Wave 5G applications [J].
Hao, Zhang-Cheng .
2019 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT 2019), 2019,
[25]   Reinforcement Learning-Based Optimization for Drone Mobility in 5G and Beyond Ultra-Dense Networks [J].
Tanveer, Jawad ;
Haider, Amir ;
Ali, Rashid ;
Kim, Ajung .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03) :3807-3823
[26]   Intimacy-based Resource Allocation for Network Slicing in 5G via Deep Reinforcement Learning [J].
He, Nan ;
Yang, Song ;
Li, Fan ;
Chen, Xu .
IEEE NETWORK, 2021, 35 (06) :111-118
[27]   Deep Reinforcement Learning-Based Network Slicing for beyond 5G [J].
Suh, Kyungjoo ;
Kim, Sunwoo ;
Ahn, Yongjun ;
Kim, Seungnyun ;
Ju, Hyungyu ;
Shim, Byonghyo .
IEEE Access, 2022, 10 :7384-7395
[28]   Deep Reinforcement Learning-Based Network Slicing for Beyond 5G [J].
Suh, Kyungjoo ;
Kim, Sunwoo ;
Ahn, Yongjun ;
Kim, Seungnyun ;
Ju, Hyungyu ;
Shim, Byonghyo .
IEEE ACCESS, 2022, 10 :7384-7395
[29]   DISTRIBUTED RESOURCE ALLOCATION IN 5G NETWORKS WITH MULTI-AGENT REINFORCEMENT LEARNING [J].
Menard, Jon ;
Al-Habashna, Ala'a ;
Wainer, Gabriel ;
Boudreau, Gary .
PROCEEDINGS OF THE 2022 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'22), 2022, :802-813
[30]   Resource allocation in mmWave 5G IAB networks: A reinforcement learning approach based on column generation [J].
Zhang, Bibo ;
Devoti, Francesco ;
Filippini, Ilario ;
De Donno, Danilo .
COMPUTER NETWORKS, 2021, 196