Semiclassical Analysis of the Largest Gap of Quasi-Periodic Schrodinger Operators

被引:3
作者
Krueger, H. [1 ]
机构
[1] Rice Univ, Dept Math, Houston, TX 77005 USA
关键词
gaps in the spectrum; Schrodinger operators; semiclassical analysis; SPECTRUM;
D O I
10.1051/mmnp/20105411
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this note, I wish to describe the first order semiclassical approximation to the spectrum of one frequency quasi-periodic operators. In the case of a sampling function with two critical points, the spectrum exhibits two gaps in the leading order approximation. Furthermore, I will give an example of a two frequency quasi-periodic operator, which has no gaps in the leading order of the semiclassical approximation.
引用
收藏
页码:256 / 268
页数:13
相关论文
共 13 条
[1]  
[Anonymous], ANN MATH IN PRESS
[2]   The Ten Martini Problem [J].
Avila, Artur ;
Jitomirskaya, Svetlana .
ANNALS OF MATHEMATICS, 2009, 170 (01) :303-342
[3]   CANTOR SPECTRUM FOR SCHRODINGER OPERATORS WITH POTENTIALS ARISING FROM GENERALIZED SKEW-SHIFTS [J].
Avila, Artur ;
Bochi, Jairo ;
Damanik, David .
DUKE MATHEMATICAL JOURNAL, 2009, 146 (02) :253-280
[4]  
Bourgain J, 2005, Annals of Mathematics Studies, V158
[5]  
Bourgain J., 2000, Geometric aspects of functional analysis, V1745, P37
[6]   ANDERSON LOCALIZATION FOR THE 1-D DISCRETE SCHRODINGER OPERATOR WITH 2-FREQUENCY POTENTIAL [J].
CHULAEVSKY, VA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (01) :91-112
[7]   Duality and singular continuous spectrum in the almost Mathieu equation [J].
Gordon, AY ;
Jitomirskaya, S ;
Last, Y ;
Simon, B .
ACTA MATHEMATICA, 1997, 178 (02) :169-183
[8]   WALK INSIDE HOFSTADTER BUTTERFLY [J].
GUILLEMENT, JP ;
HELFFER, B ;
TRETON, P .
JOURNAL DE PHYSIQUE, 1989, 50 (15) :2019-2058
[9]  
Helfer B., 1990, MEM SOC MATH FRANCE
[10]   ENERGY-LEVELS AND WAVE-FUNCTIONS OF BLOCH ELECTRONS IN RATIONAL AND IRRATIONAL MAGNETIC-FIELDS [J].
HOFSTADTER, DR .
PHYSICAL REVIEW B, 1976, 14 (06) :2239-2249