Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity

被引:248
|
作者
Zavaleta, ES
Shaw, MR
Chiariello, NR
Mooney, HA
Field, CB
机构
[1] Stanford Univ, Dept Sci Biol, Stanford, CA 94305 USA
[2] Carnegie Inst Washington, Stanford, CA 94305 USA
[3] Stanford Univ, Jasper Ridge Biol Preserve, Stanford, CA 94305 USA
关键词
California grassland; plant diversity; functional groups; global change interactions;
D O I
10.1073/pnas.0932734100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biodiversity responses to ongoing climate and atmospheric changes will affect both ecosystem processes and the delivery of ecosystem goods and services. Combined effects of co-occurring global changes on diversity, however, are poorly understood. We examined plant diversity responses in a California annual grassland to manipulations of four global environmental changes, singly and in combination: elevated CO2, warming, precipitation, and nitrogen deposition. After 3 years, elevated CO2 and nitrogen deposition each reduced plant diversity, whereas elevated precipitation increased it and warming had no significant effect. Diversity responses to both single and combined global change treatments were driven overwhelmingly by gains and losses of forb species, which make up most of the native plant diversity in California grasslands. Diversity responses across treatments also showed no consistent relationship to net primary production responses, illustrating that the diversity effects of these environmental changes could not be explained simply by changes in productivity. In two- to four-way combinations, simulated global changes did not interact in any of their effects on diversity. Our results show that climate and atmospheric changes can rapidly alter biological diversity, with combined effects that, at least in some settings, are simple, additive combinations of single-factor effects.
引用
收藏
页码:7650 / 7654
页数:5
相关论文
共 50 条
  • [41] Effects of elevated CO2 and nitrogen on proanthocyanidins in cotton.
    Booker, FL
    PLANT PHYSIOLOGY, 1997, 114 (03) : 489 - 489
  • [42] EFFECTS OF NITROGEN SUPPLY ON THE ACCLIMATION OF PHOTOSYNTHESIS TO ELEVATED CO2
    PETTERSSON, R
    MCDONALD, AJS
    PHOTOSYNTHESIS RESEARCH, 1994, 39 (03) : 389 - 400
  • [43] Biodiversity, Nitrogen Deposition, and CO2 Affect Grassland Soil Carbon Cycling but not Storage
    Joseph P. Reid
    E. Carol Adair
    Sarah E. Hobbie
    Peter B. Reich
    Ecosystems, 2012, 15 : 580 - 590
  • [44] Biodiversity, Nitrogen Deposition, and CO2 Affect Grassland Soil Carbon Cycling but not Storage
    Reid, Joseph P.
    Adair, E. Carol
    Hobbie, Sarah E.
    Reich, Peter B.
    ECOSYSTEMS, 2012, 15 (04) : 580 - 590
  • [45] The effects of elevated CO2 and nitrogen nutrition on root dynamics
    Cohen, Itay
    Rapaport, Tal
    Berger, Reut Tal
    Rachmilevitch, Shimon
    PLANT SCIENCE, 2018, 272 : 294 - 300
  • [46] Combined effects of warming and elevated CO2 on the impact of drought in grassland species
    Naudts, K.
    Van den Berge, J.
    Janssens, I. A.
    Nijs, I.
    Ceulemans, R.
    PLANT AND SOIL, 2013, 369 (1-2) : 497 - 507
  • [47] Combined effects of warming and elevated CO2 on the impact of drought in grassland species
    K. Naudts
    J. Van den Berge
    I. A. Janssens
    I. Nijs
    R. Ceulemans
    Plant and Soil, 2013, 369 : 497 - 507
  • [48] Changes in nitrogen metabolism of Vigna radiata in response to elevated CO2
    Srivastava, AC
    Pal, M
    Sengupta, UK
    BIOLOGIA PLANTARUM, 2002, 45 (03) : 395 - 399
  • [49] The effects of elevated CO2 on symbiotic N-2 fixation: A link between the carbon and nitrogen cycles in grassland ecosystems
    Soussana, JF
    Hartwig, UA
    PLANT AND SOIL, 1996, 187 (02) : 321 - 332
  • [50] Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition (vol 410, pg 809, 2001)
    Reich, PB
    Knops, J
    Tilman, D
    Craine, J
    Ellsworth, D
    Tjoelker, M
    Lee, T
    Wedin, D
    Naeem, S
    Bahauddin, D
    Hendrey, G
    Jose, S
    Wrage, K
    Goth, J
    Bengston, W
    NATURE, 2001, 411 (6839) : 824 - +