Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity

被引:248
|
作者
Zavaleta, ES
Shaw, MR
Chiariello, NR
Mooney, HA
Field, CB
机构
[1] Stanford Univ, Dept Sci Biol, Stanford, CA 94305 USA
[2] Carnegie Inst Washington, Stanford, CA 94305 USA
[3] Stanford Univ, Jasper Ridge Biol Preserve, Stanford, CA 94305 USA
关键词
California grassland; plant diversity; functional groups; global change interactions;
D O I
10.1073/pnas.0932734100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biodiversity responses to ongoing climate and atmospheric changes will affect both ecosystem processes and the delivery of ecosystem goods and services. Combined effects of co-occurring global changes on diversity, however, are poorly understood. We examined plant diversity responses in a California annual grassland to manipulations of four global environmental changes, singly and in combination: elevated CO2, warming, precipitation, and nitrogen deposition. After 3 years, elevated CO2 and nitrogen deposition each reduced plant diversity, whereas elevated precipitation increased it and warming had no significant effect. Diversity responses to both single and combined global change treatments were driven overwhelmingly by gains and losses of forb species, which make up most of the native plant diversity in California grasslands. Diversity responses across treatments also showed no consistent relationship to net primary production responses, illustrating that the diversity effects of these environmental changes could not be explained simply by changes in productivity. In two- to four-way combinations, simulated global changes did not interact in any of their effects on diversity. Our results show that climate and atmospheric changes can rapidly alter biological diversity, with combined effects that, at least in some settings, are simple, additive combinations of single-factor effects.
引用
收藏
页码:7650 / 7654
页数:5
相关论文
共 50 条
  • [1] Grassland species effects on soil CO2 flux track the effects of elevated CO2 and nitrogen
    Craine, JM
    Wedin, DA
    Reich, PB
    NEW PHYTOLOGIST, 2001, 150 (02) : 425 - 434
  • [2] Effects of elevated CO2 and nitrogen deposition on Sphagnum species
    van der Heijden, E
    Jauhiainen, J
    Matero, J
    Eekhof, M
    Mitchell, E
    RESPONSES OF PLANT METABOLISM TO AIR POLLUTION AND GLOBAL CHANGE, 1998, : 475 - 478
  • [3] Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition
    Peter B. Reich
    Jean Knops
    David Tilman
    Joseph Craine
    David Ellsworth
    Mark Tjoelker
    Tali Lee
    David Wedin
    Shahid Naeem
    Dan Bahauddin
    George Hendrey
    Shibu Jose
    Keith Wrage
    Jenny Goth
    Wendy Bengston
    Nature, 2001, 410 : 809 - 810
  • [4] Elevated CO2 Reduces Losses of Plant Diversity Caused by Nitrogen Deposition
    Reich, Peter B.
    SCIENCE, 2009, 326 (5958) : 1399 - 1402
  • [5] Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition
    Reich, PB
    Knops, J
    Tilman, D
    Craine, J
    Ellsworth, D
    Tjoelker, M
    Lee, T
    Wedin, D
    Naeem, S
    Bahauddin, D
    Hendrey, G
    Jose, S
    Wrage, K
    Goth, J
    Bengston, W
    NATURE, 2001, 410 (6830) : 809 - 812
  • [6] Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland
    Dijkstra, Feike A.
    Blumenthal, Dana
    Morgan, Jack A.
    Pendall, Elise
    Carrillo, Yolima
    Follett, Ronald F.
    NEW PHYTOLOGIST, 2010, 187 (02) : 426 - 437
  • [7] Effects of elevated CO2, increased nitrogen deposition, and plant diversity on aboveground litter and root decomposition
    Zuo, Xiaoan
    Knops, Johannes M. H.
    ECOSPHERE, 2018, 9 (02):
  • [8] Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease
    Mitchell, CE
    Reich, PB
    Tilman, D
    Groth, JV
    GLOBAL CHANGE BIOLOGY, 2003, 9 (03) : 438 - 451
  • [9] Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland
    Henry, HAL
    Cleland, EE
    Field, CB
    Vitousek, PM
    OECOLOGIA, 2005, 142 (03) : 465 - 473
  • [10] Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland
    Hugh A. L. Henry
    Elsa E. Cleland
    Christopher B. Field
    Peter M. Vitousek
    Oecologia, 2005, 142 : 465 - 473