Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb

被引:971
作者
Tee, AR
Manning, BD
Roux, PP
Cantley, LC
Blenis, J [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[2] Beth Israel Deaconess Med Ctr, Div Signal Transduct, Boston, MA 02215 USA
关键词
D O I
10.1016/S0960-9822(03)00506-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. Results: We show that the small G protein Rheb (Ras homolog enriched in brain) is a molecular target of TSC1/TSC2 that regulates mTOR signaling. Overexpression of Rheb activates 40S ribosomal protein S6 kinase 1 (S6K1) but not p90 ribosomal S6 kinase 1 (RSK1) or Akt. Furthermore, Rheb induces phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and causes 4E-BP1 to dissociate from elF4E. This dissociation is completely sensitive to rapamycin (an mTOR inhibitor) but not wortmannin (a phosphoinositide 3-kinase [PI3K] inhibitor). Rheb also activates S6K1 during amino acid insufficiency via a rapamycin-sensitive mechanism, suggesting that Rheb participates in nutrient signaling through mTOR. Moreover, Rheb does not activate a S6K1 mutant that is unresponsive to mTOR-mediated signals, confirming that Rheb functions upstream of mTOR. Overexpression of the Tuberin-Hamartin heterodimer inhibits Rheb-mediated S6K1 activation, suggesting that Tuberin functions as a Rheb GTPase activating protein (GAP). Supporting this notion, TSC patient-derived Tuberin GAP domain mutants were unable to inactivate Rheb in vivo. Moreover, in vitro studies reveal that Tuberin, when associated with Hamartin, acts as a Rheb GTPase-activating protein. Finally, we show that membrane localization of Rheb is important for its biological activity because a farnesylation-defective mutant of Rheb stimulated S6K1 activation less efficiently. Conclusions: We show that Rheb acts as a novel mediator of the nutrient signaling input to mTOR and is the molecular target of TSC1 and TSC2 within mammalian cells.
引用
收藏
页码:1259 / 1268
页数:10
相关论文
共 50 条
[1]   Tuberin, the tuberous sclerosis complex 2 tumor suppressor gene product, regulates Rho activation, cell adhesion and migration [J].
Astrinidis, A ;
Cash, TP ;
Hunter, DS ;
Walker, CL ;
Chernoff, J ;
Henske, EP .
ONCOGENE, 2002, 21 (55) :8470-8476
[2]   Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability [J].
Beugnet, A ;
Tee, AR ;
Taylor, PM ;
Proud, CG .
BIOCHEMICAL JOURNAL, 2003, 372 :555-566
[3]  
BLENIS J, 1986, P NATL ACAD SCI USA, V83, P1733, DOI 10.1073/pnas.83.6.1733
[4]   9Q34 LOSS OF HETEROZYGOSITY IN A TUBEROUS SCLEROSIS ASTROCYTOMA SUGGESTS A GROWTH SUPPRESSOR-LIKE ACTIVITY ALSO FOR THE TSC1 GENE [J].
CARBONARA, C ;
LONGA, L ;
GROSSO, E ;
BORRONE, C ;
GARRE, MG ;
BRISIGOTTI, M ;
MIGONE, N .
HUMAN MOLECULAR GENETICS, 1994, 3 (10) :1829-1832
[5]   Molecular genetic advances in tuberous sclerosis [J].
Cheadle, JP ;
Reeve, MP ;
Sampson, JR ;
Kwiatkowski, DJ .
HUMAN GENETICS, 2000, 107 (02) :97-114
[6]   ACTIVATION OF HA-RAS P21 BY SUBSTITUTION, DELETION, AND INSERTION MUTATIONS [J].
CHIPPERFIELD, RG ;
JONES, SS ;
LO, KM ;
WEINBERG, RA .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (08) :1809-1813
[7]   RAPAMYCIN FKBP SPECIFICALLY BLOCKS GROWTH-DEPENDENT ACTIVATION OF AND SIGNALING BY THE 70 KD S6 PROTEIN-KINASES [J].
CHUNG, J ;
KUO, CJ ;
CRABTREE, GR ;
BLENIS, J .
CELL, 1992, 69 (07) :1227-1236
[8]  
Clark GJ, 1997, J BIOL CHEM, V272, P10608
[9]  
DOWNWARD J, 1995, METHOD ENZYMOL, V255, P110
[10]   Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E [J].
Fingar, DC ;
Salama, S ;
Tsou, C ;
Harlow, E ;
Blenis, J .
GENES & DEVELOPMENT, 2002, 16 (12) :1472-1487