Effect of Y doping on microstructure and thermophysical properties of yttria stabilized hafnia ceramics

被引:33
|
作者
Li, Chun [1 ]
Ma, Yue [1 ]
Xue, Zhaolu [1 ]
Yang, Yonghong [2 ]
Chen, Jianhua [2 ]
Guo, Hongbo [1 ]
机构
[1] Beihang Univ BUAA, Sch Mat Sci & Engn, Beijing Key Lab Adv Funct Mat & Thin Film Technol, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[2] Xian Aerosp Prop Inst, Xian Natl Civil Aerosp Ind Base, 289 Fei Tian Rd, Xian 71000, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Yttria stabilized hafnia (YSH); Phase stability; Microstructure; Thermophysical properties; THERMAL BARRIER COATINGS; EB-PVD; SOLID-SOLUTIONS; CONDUCTIVITY; ZIRCONIA; EXPANSION; BEHAVIOR;
D O I
10.1016/j.ceramint.2018.07.030
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A series of Y2O3-doped HfO2 ceramics (Hf1-xYxO2-0.5x, x = 0, 0.04, 0.08, 0.12, 0.16 and 0.2) were synthesized by solid-state reaction at 1600 degrees C. The microstructure, thermophysical properties and phase stability were investigated. Hf1-xYxO2-0.5x ceramics were comprised of monoclinic (M) phase and cubic (C) phase when Y3+ ion concentration ranged from 0.04 to 0.16. The thermal conductivity of Hf1-xYxO2-0.5x ceramic decreased as Y3+ ion concentration increased and Hf0.8Y0.2O1.9 ceramic revealed the lowest thermal conductivity of similar to 1.8 W/m*K at 1200 degrees C. The average thermal expansion coefficient (TEC) of Hf1-xYxO2-0.5x between 200 degrees C and 1300 degrees C increased with the Y3+ ion concentration. Hf0.8Y0.2O1.9 yielded the highest TEC of similar to 10.4 x 10(-6) K-1 while keeping good phase stability between room temperature and 1600 degrees C.
引用
收藏
页码:18213 / 18221
页数:9
相关论文
共 50 条
  • [1] Self-toughening behavior of nano yttria partially stabilized hafnia ceramics
    Li, Chun
    Ma, Yue
    He, Jian
    Guo, Hongbo
    CERAMICS INTERNATIONAL, 2019, 45 (17) : 21467 - 21474
  • [2] Resistive-switching in yttria-stabilized hafnia ceramics
    Alotaibi, Meshari
    Almutairi, Fawaz
    West, Anthony R.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (02) : 822 - 828
  • [3] Microstructure and thermal oxidation behavior of yttria-stabilized hafnia nanostructured coatings deposited on alumina
    Rubio, E. J.
    Martinez, G.
    Noor-A-Alam, M.
    Stafford, S. W.
    Shutthanandan, V.
    Ramana, C. V.
    SURFACE & COATINGS TECHNOLOGY, 2013, 236 : 142 - 148
  • [4] Effect of yttria on thermal transport and vibrational modes in yttria-stabilized hafnia
    Wang, Xuezhi
    Che, Junwei
    Liu, Xiangyang
    CERAMICS INTERNATIONAL, 2022, 48 (21) : 31705 - 31713
  • [5] Nanocrystalline yttria-stabilized hafnia ceramics with low thermal conductivity and enhanced mechanical properties
    Cheng, Ao
    Zou, Ji
    Wang, Weimin
    Ji, Wei
    Fu, Zhengyi
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2025,
  • [6] Electrical properties of yttria-stabilised hafnia ceramics
    Alotaibi, Meshari
    Li, Linhao
    West, Anthony R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (45) : 25951 - 25960
  • [7] Evolution mechanism of the microstructure and mechanical properties of plasma-sprayed yttria-stabilized hafnia thermal barrier coating at 1400 °C
    Li, Chun
    He, Jian
    Ma, Yue
    Guo, Hongbo
    CERAMICS INTERNATIONAL, 2020, 46 (15) : 23417 - 23426
  • [8] Effect of Y2O3 doping on thermophysical properties and grain growth rate of lanthanum zirconate
    Moaveni, M. J.
    Omidvar, H.
    Farvizi, M.
    Mirbagheri, S. M. H.
    CERAMICS INTERNATIONAL, 2024, 50 (15) : 26410 - 26423
  • [9] The Effect of Sintering Temperature on the Phase Composition, Microstructure, and Mechanical Properties of Yttria-Stabilized Zirconia
    Kulyk, Volodymyr
    Duriagina, Zoia
    Vasyliv, Bogdan
    Vavrukh, Valentyna
    Kovbasiuk, Taras
    Lyutyy, Pavlo
    Vira, Volodymyr
    MATERIALS, 2022, 15 (08)
  • [10] Preparation and Thermophysical Properties of New Multi-Component Entropy-Stabilized Oxide Ceramics for Thermal Barrier Coatings
    Li, Wenzhe
    Zhu, Yongping
    Wang, Xueying
    Zhao, Lili
    Chu, Ying
    Chen, Fuhua
    Ge, Chang
    Fang, Shige
    COATINGS, 2023, 13 (05)