RESONANT EFFECTS IN RANDOM DIELECTRIC STRUCTURES

被引:5
作者
Bouchitte, Guy [1 ]
Bourel, Christophe [2 ]
Manca, Luigi [3 ]
机构
[1] Univ Sud Toulon Var, IMATH, F-83957 La Garde, France
[2] Univ Littoral Cote dOpale, LMPA, F-62228 Calais, France
[3] Univ Marne la Vallee, LAMA, F-77454 Marne La Vallee 2, France
关键词
Stochastic homogenization; photonic crystals; metamaterials; micro-resonators; effective tensors; dynamical system; ARTIFICIAL MAGNETISM; 2-SCALE CONVERGENCE; PHOTONIC CRYSTALS; HOMOGENIZATION; REFRACTION;
D O I
10.1051/cocv/2014026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In [G. Bouchitte and D. Felbacq, C. R. Math. Acad. Sci. Paris 339 (2004) 377-382; D. Felbacq and G. Bouchitte, Phys. Rev. Lett. 94 (2005) 183902; D. Felbacq and G. Bouchitte, New J. Phys. 7 (2005) 159], a theory for artificial magnetism in two-dimensional photonic crystals has been developed for large wavelength using homogenization techniques. In this paper we pursue this approach within a rigorous stochastic framework: dielectric parallel nanorods are randomly disposed, each of them having, up to a large scaling factor, a random permittivity epsilon(omega omega) whose law is represented by a density on a window Delta h = [a(-), a(+)] x [0, h] of the complex plane. We give precise conditions on the initial probability law (permittivity, radius and position of the rods) under which the homogenization process can be performed leading to a deterministic dispersion law for the effective permeability with possibly negative real part. Subsequently a limit analysis h -> 0, accounting a density law of e which concentrates on the real axis, reveals singular behavior due to the presence of resonances in the microstructure.
引用
收藏
页码:217 / 246
页数:30
相关论文
共 25 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]   Homogenization near resonances and artificial magnetism from dielectrics [J].
Bouchitté, G ;
Felbacq, D .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) :377-382
[3]   Multiscale Nanorod Metamaterials and Realizable Permittivity Tensors [J].
Bouchitte, G. ;
Bourel, C. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 11 (02) :489-507
[4]  
Bouchitte G., 1997, WAVE RANDOM MEDIA, V7, P1
[5]   Homogenization of a wire photonic crystal:: The case of small volume fraction [J].
Bouchitte, Guy ;
Felbacq, Didier .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (06) :2061-2084
[6]   HOMOGENIZATION OF MAXWELL'S EQUATIONS IN A SPLIT RING GEOMETRY [J].
Bouchitte, Guy ;
Schweizer, Ben .
MULTISCALE MODELING & SIMULATION, 2010, 8 (03) :717-750
[7]   Homogenization of the 3D Maxwell system near resonances and artificial magnetism [J].
Bouchitte, Guy ;
Bourel, Christophe ;
Felbacq, Didier .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) :571-576
[8]  
BOURGEAT A, 1994, J REINE ANGEW MATH, V456, P19
[9]   HOMOGENIZATION IN OPEN SETS WITH HOLES [J].
CIORANESCU, D ;
PAULIN, JSJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (02) :590-607
[10]  
Colton DL, 1998, INVERSE ACOUSTIC ELE, V2nd