Improved Fault Diagnosis Using Dynamic Kernel Scatter-Difference-Based Discriminant Analysis

被引:15
作者
Sumana, C. [1 ,2 ]
Mani, Bhushan [1 ]
Venkateswarlu, Ch. [2 ]
Gudi, Ravindra D. [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India
[2] Indian Inst Chem Technol, Hyderabad 500007, Andhra Pradesh, India
关键词
PARTIAL LEAST-SQUARES; CLASSIFICATION; IDENTIFICATION;
D O I
10.1021/ie902019h
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Performing fault diagnosis of nonlinear processes involving data with serial correlations, nonlinearities, and overlapping signatures is a challenging task. This article proposes a dynamic kernel scatter-difference-based discriminant analysis (DKSDA) for resolving such complex data so as to improve fault resolution for efficient diagnosis. The DKSDA considers a suitably time lagged extension of the original data and allows its transformation into high-dimensional feature space via nonlinear kernel functions, and then solves the scatter difference form of the Fisher criterion. This fault diagnosis method successfully addresses the problem of dynamic correlations that are typically associated with chemical process measurements and efficiently captures the nonlinearities in data. A systematic procedure is proposed to configure the interactive parameters, namely, the number of lags, the scatter difference, and the kernel width, which govern the performance of DKSDA. The procedure involves a two-dimensional grid search at two levels to minimize a performance criterion defined in terms of the misclassification of DKSDA scores evaluated by cross validation using the nearest mean classifiers. The performance of the proposed method is evaluated by applying it for the diagnosis of overlapping and nonoverlapping faults of Tennessee Eastman challenge process and the overlapping faults of a general multivariable nonlinear dynamic process. The comparison of results with the recently reported methods demonstrates the superior performance of DKSDA for nonlinear process fault diagnosis involving complex overlapping data.
引用
收藏
页码:8575 / 8586
页数:12
相关论文
共 31 条
[1]  
[Anonymous], 2001, Pattern Classification
[2]   Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis [J].
Chiang, LH ;
Russell, EL ;
Braatz, RD .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (02) :243-252
[3]   Genetic algorithms combined with discriminant analysis for key variable identification [J].
Chiang, LH ;
Pell, RJ .
JOURNAL OF PROCESS CONTROL, 2004, 14 (02) :143-155
[4]   Fault diagnosis based on Fisher discriminant analysis and support vector machines [J].
Chiang, LH ;
Kotanchek, ME ;
Kordon, AK .
COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) :1389-1401
[5]   Nonlinear feature extraction and classification of multivariate process data in kernel feature space [J].
Cho, Hyun-Woo .
EXPERT SYSTEMS WITH APPLICATIONS, 2007, 32 (02) :534-542
[6]   Fault detection and identification of nonlinear processes based on kernel PCA [J].
Choi, SW ;
Lee, C ;
Lee, JM ;
Park, JH ;
Lee, IB .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 75 (01) :55-67
[7]   Nonlinear dynamic process monitoring based on dynamic kernel PCA [J].
Choi, SW ;
Lee, IB .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (24) :5897-5908
[8]   A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM [J].
DOWNS, JJ ;
VOGEL, EF .
COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) :245-255
[9]  
Karmeshu, 2003, STUD FUZZ SOFT COMP, V119, P1
[10]   A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction [J].
Kim, K ;
Lee, JM ;
Lee, IB .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 79 (1-2) :22-30