Analysis of Volatile Molecules Present in the Secretome of the Fungal Pathogen Candida glabrata

被引:4
|
作者
Ernesto Lopez-Ramos, Juan [1 ]
Bautista, Elihu [2 ]
Gutierrez-Escobedo, Guadalupe [1 ]
Mancilla-Montelongo, Gabriela [3 ]
Castano, Irene [1 ]
Martin Gonzalez-Chavez, Marco [4 ]
De Las Penas, Alejandro [1 ]
机构
[1] IPICYT, Div Biol Mol, Inst Potosino Invest Cient & Tecnol, Camino Presa San Jose 2055,Col Lomas 4a Secc, San Luis Potosi 78216, San Luis Potosi, Mexico
[2] Inst Potosino Invest Cient & Tecnol AC, CONACYT Consorcio Invest Innovac & Desarrollo Zon, IPICYT, Camino Presa San Jose 2055,Col Lomas 4a Secc, San Luis Potosi 78216, San Luis Potosi, Mexico
[3] Univ Autonoma Yucatan, CONACYT, Fac Med Vet & Zootecnia, Carretera Merida Xmatkuil Km 15-5 S-N, Merida 97100, Yucatan, Mexico
[4] Univ Autonoma San Luis Potosi, Fac Ciencias Quim, Av Dr Manuel Nava 6, San Luis Potosi 78290, San Luis Potosi, Mexico
来源
MOLECULES | 2021年 / 26卷 / 13期
关键词
secretome; Candida glabrata; GC-MS analysis; phenylethanol; eicosane; nonanoic acid; OXIDATIVE STRESS-RESPONSE; ALCOHOL PRODUCTION; NONANOIC ACID; ALBICANS; MORPHOGENESIS; HYDROCARBONS; FLUCONAZOLE; RESISTANCE; YEAST;
D O I
10.3390/molecules26133881
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis are the four most common human fungal pathogens isolated that can cause superficial and invasive infections. It has been shown that specific metabolites present in the secretomes of these fungal pathogens are important for their virulence. C. glabrata is the second most common isolate world-wide and has an innate resistance to azoles, xenobiotics and oxidative stress that allows this fungal pathogen to evade the immune response and persist within the host. Here, we analyzed and compared the C. glabrata secretome with those of C. albicans, C. parapsilosis, C. tropicalis and the non-pathogenic yeast Saccharomyces cerevisiae. In C. glabrata, we identified a different number of metabolites depending on the growth media: 12 in synthetic complete media (SC), 27 in SC-glutamic acid and 23 in rich media (YPD). C. glabrata specific metabolites are 1-dodecene (0.09 +/- 0.11%), 2,5-dimethylundecane (1.01 +/- 0.19%), 3,7-dimethyldecane (0.14 +/- 0.15%), and octadecane (0.4 +/- 0.53%). The metabolites that are shared with C. albicans, C. glabrata, C. parapsilosis, C. tropicalis and S. cerevisiae are phenylethanol, which is synthesized from phenylalanine, and eicosane and nonanoic acid (identified as trimethylsilyl ester), which are synthesized from fatty acid metabolism. Phenylethanol is the most abundant metabolite in all fungi tested: 26.36 +/- 17.42% (C. glabrata), 46.77 +/- 15.58% (C. albicans), 49.76 +/- 18.43% (C. tropicalis), 5.72 +/- 0.66% (C. parapsilosis.) and 44.58 +/- 27.91% (S. cerevisiae). The analysis of C. glabrata's secretome will allow us to further our understanding of the possible role these metabolites could play in its virulence.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Proteomic analysis of the pH response in the fungal pathogen Candida glabrata
    Schmidt, Pia
    Walker, Janet
    Selway, Laura
    Stead, David
    Yin, Zhikang
    Enjalbert, Brice
    Weig, Michael
    Brown, Alistair J. P.
    PROTEOMICS, 2008, 8 (03) : 534 - 544
  • [2] The Superoxide Dismutases in the Fungal Pathogen Candida Glabrata
    Briones Martin del Campo, Marcelo Cecilia
    Gutierrez-Escobedo, Maria Guadalupe
    Juarez-Cepeda, Jacqueline
    Naval, Alejandro De Las Penas
    FREE RADICAL BIOLOGY AND MEDICINE, 2012, 53 : S16 - S16
  • [3] The oxidative stress response of the opportunistic fungal pathogen Candida glabrata
    Briones-Martin-Del-Campo, Marcela
    Orta-Zavalza, Emmanuel
    Juarez-Cepeda, Jacqueline
    Gutierrez-Escobedo, Guadalupe
    Canas-Villamar, Israel
    Castano, Irene
    De Las Penas, Alejandro
    REVISTA IBEROAMERICANA DE MICOLOGIA, 2014, 31 (01): : 67 - 71
  • [4] Force Nanoscopy of Hydrophobic Interactions in the Fungal Pathogen Candida glabrata
    El-Kirat-Chatel, Sofiane
    Beaussart, Audrey
    Derclaye, Sylvie
    Alsteens, David
    Kucharikova, Sona
    Van Dijck, Patrick
    Dufrene, Yves F.
    ACS NANO, 2015, 9 (02) : 1648 - 1655
  • [5] The regulation of iron homeostasis in the fungal human pathogen Candida glabrata
    Devaux, Frederic
    Thiebaut, Antonin
    MICROBIOLOGY-SGM, 2019, 165 (10): : 1041 - 1060
  • [6] Characterization of the Trr/Trx system in the fungal pathogen Candida glabrata
    Gutierrez-Escobedo, Guadalupe
    Vazquez-Franco, Norma
    Lopez-Marmolejo, Ana
    Luna-Arvizu, Gabriel
    Canas-Villamar, Israel
    Castano, Irene
    De Las Penas, Alejandro
    FUNGAL GENETICS AND BIOLOGY, 2023, 166
  • [7] Pathogenesis and Antifungal Drug Resistance of the Human Fungal Pathogen Candida glabrata
    Tscherner, Michael
    Schwarzmueller, Tobias
    Kuchler, Karl
    PHARMACEUTICALS, 2011, 4 (01): : 169 - 186
  • [8] Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata
    Guadalupe Gutiérrez-Escobedo
    Emmanuel Orta-Zavalza
    Irene Castaño
    Alejandro De Las Peñas
    Current Genetics, 2013, 59 : 91 - 106
  • [9] Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata
    Gutierrez-Escobedo, Guadalupe
    Orta-Zavalza, Emmanuel
    Castano, Irene
    De Las Penas, Alejandro
    CURRENT GENETICS, 2013, 59 (03) : 91 - 106
  • [10] PKA pathway controls the oxidative stress response in the fungal pathogen Candida glabrata
    Contreras, Yazmin
    De Las Penas, Alejandro
    Gutierrez Escobedo, Ma. Guadalupe
    Ricardo Gonzalez-Ruiz, Carlos
    Castano Navarro, Irene
    FREE RADICAL BIOLOGY AND MEDICINE, 2023, 208 : S118 - S118