Integral inequalities for self-reciprocal polynomials

被引:1
作者
Alzer, Horst
机构
[1] D-51545 Waldbröl
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2010年 / 120卷 / 02期
关键词
Self-reciprocal polynomials; integral inequalities;
D O I
10.1007/s12044-010-0016-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n >= 1 be an integer and let P(n) be the class of polynomials P of degree at most n satisfying z(n) P(1/z) = P(z) for all z is an element of C. Moreover, let r be an integer with 1 <= r <= n. Then we have for all P is an element of P (n) : alpha(n)(r) integral(2 pi)(0) vertical bar P(e(it))vertical bar(2)dt <= integral(2 pi)(0) vertical bar P((r))(e(it))vertical bar(2)dt <= beta(n)(r) integral(2 pi)(0) vertical bar P(e(it))vertical bar(2)dt with the best possible factors beta(n)(r) = 1/2 Pi(r-1)(j-0) (n - j)(2). alpha(n)(r) = {Pi(r-1)(j=0) (n/2 - j)(2), if n is even, 1/2[Pi(r-1)(j=0) (n+1/2 - j)(2) + Pi(r-1)(j=0) (n-1/2 - j)(2)], if n is odd, This refines and extends a result due to Aziz and Zatgur (1997).
引用
收藏
页码:131 / 137
页数:7
相关论文
共 5 条
[1]  
ALZER H, 1999, COMPL VARIABLES, V39, P335
[2]   On self-reciprocal polynomials [J].
Aziz, A ;
Zargar, BA .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (02) :197-199
[3]  
Govil N. K., 1996, COMPLEX VARIABLES, V31, P185
[4]   NECKLACES, SYMMETRIES AND SELF-RECIPROCAL POLYNOMIALS [J].
MILLER, RL .
DISCRETE MATHEMATICS, 1978, 22 (01) :25-33
[5]  
Niederreiter H., 1983, FINITE FIELDS