Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility

被引:66
|
作者
Ghosh, Sumit [1 ,2 ]
Bibhanshu, Nitish [1 ,3 ]
Suwas, Satyam [1 ]
Chatterjee, Kaushik [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
[2] Univ Oulu, Ctr Adv Steels Res, Mat & Mech Engn, Oulu 90014, Finland
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2021年 / 820卷
关键词
316L austenitic Stainless steel; Selective laser melting; Surface mechanical attrition treatment; Nanocrystallization; Microstructure; X-RAY-DIFFRACTION; GRAIN-SIZE; PLASTIC-DEFORMATION; TENSILE PROPERTIES; MICROSTRUCTURE; BEHAVIOR; TEXTURE; EVOLUTION; LAYER; 304-STAINLESS-STEEL;
D O I
10.1016/j.msea.2021.141540
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface severe plastic deformation (S2PD) of additively manufactured/three-dimensional (3D) printed metallic parts is gaining increased attention as a post-manufacturing operation to enhance the material performance in a wide variety of applications. Surface mechanical attrition treatment (SMAT) is an S2PD technique that can yield a nanostructured surface layer induced by compressive stresses and work hardening. In the present study, SMAT was performed on 316L (austenitic) stainless steel (SS) processed by selective laser melting (SLM), and the consequent effects on mechanical response were investigated. The underlying mechanisms of microstructural evolution leading to the formation of nanocrystalline grains resulting from SMAT in SLM 316L SS are elucidated. The interactions between twins and deformation bands act as potential sites for impeding the movement of dislocations, which in turn leads to the formation of stacking faults, twinning, and occasionally transform to a different crystal structure. Twin-twin and/or twin-deformation band intersections sub-divide the matrix grains into smaller cells or low-angle disoriented blocks, which result in the formation of low-angle grain boundaries and finally in nanocrystallization at the surface. The size of nanocrystalline grains increases progressively with depth from the surface to micrometer size grains in bulk. The gradient nanostructure in the additively manufactured alloy after SMAT imparts an unusual combination of strength and ductility that markedly exceeds that of conventional, bulk nanostructured, or even high-performance 316L SS (containing nanoscale deformation twins embedded in submicron-sized austenitic grains obtained by dynamic plastic deformation processes). Analytical models revealed that strengthening results from a combination of grain boundaries and dislocations. The results of the present investigation pave the way for engineering high-performance SS for a variety of engineering applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Micromechanical Response of Additively Manufactured 316L Stainless Steel Processed by High-Pressure Torsion
    Mohd Yusuf, Shahir
    Chen, Ying
    Yang, Shoufeng
    Gao, Nong
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (10)
  • [42] Influence of High-Pressure Torsion on the Microstructure and Microhardness of Additively Manufactured 316L Stainless Steel
    Mohd Yusuf, Shahir
    Chen, Ying
    Gao, Nong
    METALS, 2021, 11 (10)
  • [43] Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications
    Lodhi, M. J. K.
    Deen, K. M.
    Greenlee-Wacker, M. C.
    Haider, Waseem
    ADDITIVE MANUFACTURING, 2019, 27 : 8 - 19
  • [44] Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment
    Yin, Zhe
    Yang, Xincheng
    Ma, Xiaolong
    Moering, Jordan
    Yang, Jian
    Gong, Yulan
    Zhu, Yuntian
    Zhu, Xinkun
    MATERIALS & DESIGN, 2016, 105 : 89 - 95
  • [45] Corrosion behavior of additively manufactured 316L stainless steel in acidic media
    Lodhi, M. J. K.
    Deen, K. M.
    Haider, Waseem
    MATERIALIA, 2018, 2 : 111 - 121
  • [46] Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel
    Trelewicz, Jason R.
    Halada, Gary P.
    Donaldson, Olivia K.
    Manogharan, Guha
    JOM, 2016, 68 (03) : 850 - 859
  • [47] Ti-WC Nanocrystalline Coating Formed by Surface Mechanical Attrition Treatment Process on 316L Stainless Steel
    Aliofkhazraei, M.
    Rouhaghdam, A. Sabour
    Ghobadi, E.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (10) : 9061 - 9064
  • [48] High cycle fatigue strength of additively manufactured AISI 316L Stainless Steel parts joined by laser welding
    Abroug, Foued
    Monnier, Axel
    Arnaud, Lionel
    Balcaen, Yannick
    Dalverny, Olivier
    ENGINEERING FRACTURE MECHANICS, 2022, 275
  • [49] Anisotropic spall failure of additively manufactured 316L stainless steel
    Lamb, K.
    Koube, K.
    Kacher, J.
    Sloop, T.
    Thadhani, N.
    Babu, S. S.
    ADDITIVE MANUFACTURING, 2023, 66
  • [50] Effect of Laser Peening on Surface Morphology and Deformation Level of Additively Manufactured 316L Stainless Steel
    Mithal, Abeer
    Maharjan, Niroj
    Idapalapati, Sridhar
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ADVANCED SURFACE ENHANCEMENT, INCASE 2023, 2024, : 85 - 96