Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility

被引:66
|
作者
Ghosh, Sumit [1 ,2 ]
Bibhanshu, Nitish [1 ,3 ]
Suwas, Satyam [1 ]
Chatterjee, Kaushik [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
[2] Univ Oulu, Ctr Adv Steels Res, Mat & Mech Engn, Oulu 90014, Finland
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
316L austenitic Stainless steel; Selective laser melting; Surface mechanical attrition treatment; Nanocrystallization; Microstructure; X-RAY-DIFFRACTION; GRAIN-SIZE; PLASTIC-DEFORMATION; TENSILE PROPERTIES; MICROSTRUCTURE; BEHAVIOR; TEXTURE; EVOLUTION; LAYER; 304-STAINLESS-STEEL;
D O I
10.1016/j.msea.2021.141540
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface severe plastic deformation (S2PD) of additively manufactured/three-dimensional (3D) printed metallic parts is gaining increased attention as a post-manufacturing operation to enhance the material performance in a wide variety of applications. Surface mechanical attrition treatment (SMAT) is an S2PD technique that can yield a nanostructured surface layer induced by compressive stresses and work hardening. In the present study, SMAT was performed on 316L (austenitic) stainless steel (SS) processed by selective laser melting (SLM), and the consequent effects on mechanical response were investigated. The underlying mechanisms of microstructural evolution leading to the formation of nanocrystalline grains resulting from SMAT in SLM 316L SS are elucidated. The interactions between twins and deformation bands act as potential sites for impeding the movement of dislocations, which in turn leads to the formation of stacking faults, twinning, and occasionally transform to a different crystal structure. Twin-twin and/or twin-deformation band intersections sub-divide the matrix grains into smaller cells or low-angle disoriented blocks, which result in the formation of low-angle grain boundaries and finally in nanocrystallization at the surface. The size of nanocrystalline grains increases progressively with depth from the surface to micrometer size grains in bulk. The gradient nanostructure in the additively manufactured alloy after SMAT imparts an unusual combination of strength and ductility that markedly exceeds that of conventional, bulk nanostructured, or even high-performance 316L SS (containing nanoscale deformation twins embedded in submicron-sized austenitic grains obtained by dynamic plastic deformation processes). Analytical models revealed that strengthening results from a combination of grain boundaries and dislocations. The results of the present investigation pave the way for engineering high-performance SS for a variety of engineering applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Predicting ductile tearing of additively manufactured 316L stainless steel
    Neilsen, Michael K.
    INTERNATIONAL JOURNAL OF FRACTURE, 2019, 218 (1-2) : 195 - 207
  • [32] Simultaneously Improving the Strength and Plasticity of Additively Manufactured 316L Stainless Steel by Adding Aluminum
    Tian, Hongsheng
    Li, Bochuan
    Yu, Mingxiong
    Huang, Sen
    Mao, Lizhong
    Li, Huaiyuan
    Wang, Kai
    Zhou, Zihao
    Zhu, Guo
    Xu, Kang
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (07)
  • [33] Predicting ductile tearing of additively manufactured 316L stainless steel
    Michael K. Neilsen
    International Journal of Fracture, 2019, 218 : 195 - 207
  • [34] The Fracture and Fragmentation Behaviour of Additively Manufactured Stainless Steel 316L
    Amott, R.
    Harris, E. J.
    Winter, R. E.
    Stirk, S. M.
    Chapman, D. J.
    Eakins, D. E.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2015, 2017, 1793
  • [35] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Thak Sang Byun
    Maxim N. Gussev
    Timothy G. Lach
    JOM, 2024, 76 : 362 - 378
  • [36] Effects of Heat Treatment on Microstructure Change and Mechanical Performance of Additively Manufactured 316L Stainless Steel Stents
    Kashinga, Rudolph J.
    Cao, Xuezhi
    Masseling, Lukas
    Vogt, Felix
    Schaaps, Nicole
    Zhao, Liguo
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2025, 113 (04)
  • [37] Surface integrity of consecutive shot-peened additively manufactured 316L stainless steel
    Haribaskar, R.
    Sampath Kumar, T.
    MATERIALS AND MANUFACTURING PROCESSES, 2024, 39 (13) : 1817 - 1829
  • [38] Influence of internal and surface defects on the fatigue performance of additively manufactured stainless steel 316L
    Dastgerdi, Jairan Nafar
    Jaberi, Omid
    Remes, Heikki
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 163
  • [39] Corrosion of Binder Jetting Additively Manufactured 316L Stainless Steel of Different Surface Finish
    Atapour, Masoud
    Wang, Xuying
    Persson, Mats
    Odnevall Wallinder, Inger
    Hedberg, Yolanda S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (13)
  • [40] Roughness Reduction in AISI 316L Stainless Steel after Surface Mechanical Attrition Treatment (SMAT)
    Arifvianto, B.
    Suyitno
    Mahardika, M.
    4TH NANOSCIENCE AND NANOTECHNOLOGY SYMPOSIUM (NNS2011): AN INTERNATIONAL SYMPOSIUM, 2011, 1415