Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility

被引:66
|
作者
Ghosh, Sumit [1 ,2 ]
Bibhanshu, Nitish [1 ,3 ]
Suwas, Satyam [1 ]
Chatterjee, Kaushik [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
[2] Univ Oulu, Ctr Adv Steels Res, Mat & Mech Engn, Oulu 90014, Finland
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
316L austenitic Stainless steel; Selective laser melting; Surface mechanical attrition treatment; Nanocrystallization; Microstructure; X-RAY-DIFFRACTION; GRAIN-SIZE; PLASTIC-DEFORMATION; TENSILE PROPERTIES; MICROSTRUCTURE; BEHAVIOR; TEXTURE; EVOLUTION; LAYER; 304-STAINLESS-STEEL;
D O I
10.1016/j.msea.2021.141540
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface severe plastic deformation (S2PD) of additively manufactured/three-dimensional (3D) printed metallic parts is gaining increased attention as a post-manufacturing operation to enhance the material performance in a wide variety of applications. Surface mechanical attrition treatment (SMAT) is an S2PD technique that can yield a nanostructured surface layer induced by compressive stresses and work hardening. In the present study, SMAT was performed on 316L (austenitic) stainless steel (SS) processed by selective laser melting (SLM), and the consequent effects on mechanical response were investigated. The underlying mechanisms of microstructural evolution leading to the formation of nanocrystalline grains resulting from SMAT in SLM 316L SS are elucidated. The interactions between twins and deformation bands act as potential sites for impeding the movement of dislocations, which in turn leads to the formation of stacking faults, twinning, and occasionally transform to a different crystal structure. Twin-twin and/or twin-deformation band intersections sub-divide the matrix grains into smaller cells or low-angle disoriented blocks, which result in the formation of low-angle grain boundaries and finally in nanocrystallization at the surface. The size of nanocrystalline grains increases progressively with depth from the surface to micrometer size grains in bulk. The gradient nanostructure in the additively manufactured alloy after SMAT imparts an unusual combination of strength and ductility that markedly exceeds that of conventional, bulk nanostructured, or even high-performance 316L SS (containing nanoscale deformation twins embedded in submicron-sized austenitic grains obtained by dynamic plastic deformation processes). Analytical models revealed that strengthening results from a combination of grain boundaries and dislocations. The results of the present investigation pave the way for engineering high-performance SS for a variety of engineering applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Dynamic mechanical behavior and microstructural evolution of additively manufactured 316L stainless steel
    Hongyu Yu
    Rong Chen
    Wenyang Liu
    Simeng Li
    Ling Chen
    Shujuan Hou
    Journal of Materials Science, 2022, 57 : 8425 - 8441
  • [22] Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness
    Solberg, Klas
    Guan, Shuai
    Razavi, Nima
    Welo, Torgeir
    Chan, Kang Cheung
    Berto, Filippo
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (09) : 2043 - 2052
  • [23] Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel
    Arifvianto, B.
    Suyitno
    Mahardika, M.
    APPLIED SURFACE SCIENCE, 2012, 258 (10) : 4538 - 4543
  • [24] Effect of Heat Treatment on Microstructural Evolution in Additively Manufactured 316L Stainless Steel
    Wang, Wei-Yi
    Godfrey, Andrew
    Liu, Wei
    METALS, 2023, 13 (06)
  • [25] EFFECT OF HEAT TREATMENT ON THE PROPERTIES OF ADDITIVELY MANUFACTURED TYPE 316L STAINLESS STEEL
    Korinko, Paul S.
    Morgan, Michael J.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2018, VOL 6A, 2019,
  • [26] Heterogeneous slip localization in an additively manufactured 316L stainless steel
    Bean, C.
    Wang, F.
    Charpagne, M. A.
    Villechaise, P.
    Valle, V.
    Agnew, S. R.
    Gianola, D. S.
    Pollock, T. M.
    Stinville, J. C.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 159
  • [27] Structural representation of additively manufactured 316L austenitic stainless steel
    Bronkhorst, C. A.
    Mayeur, J. R.
    Livescu, V.
    Pokharel, R.
    Brown, D. W.
    Gray, G. T., III
    INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 118 : 70 - 86
  • [28] Strengthening the additively manufactured 316L stainless steel by adding Al
    Xu, Kang
    Yu, Mingxiong
    Huang, Sen
    Tian, Hongsheng
    Mao, Lizhong
    Liu, Xinjian
    Zheng, Danfeng
    Gao, Hongwei
    Zhao, Dengbiao
    Li, Bochuan
    MATERIALS LETTERS, 2024, 357
  • [29] Anisotropic spall failure of additively manufactured 316L stainless steel
    Lamb, K.
    Koube, K.
    Kacher, J.
    Sloop, T.
    Thadhani, N.
    Babu, S. S.
    ADDITIVE MANUFACTURING, 2023, 66
  • [30] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Byun, Thak Sang
    Gussev, Maxim N.
    Lach, Timothy G.
    JOM, 2024, 76 (01) : 362 - 378