Critical Metrics of the Volume Functional on Compact Three-Manifolds with Smooth Boundary

被引:29
|
作者
Batista, R. [1 ]
Diogenes, R. [2 ]
Ranieri, M. [3 ]
Ribeiro, E., Jr. [3 ]
机构
[1] Univ Fed Piaui UFPI, Dept Matemat, BR-64049550 Teresina, PI, Brazil
[2] Univ Integracao Int Lusofonia Afrobrasileir UNILA, Inst Ciencias Exatas & Nat, BR-62785000 Acarape, Brazil
[3] Univ Fed Ceara, Dept Matemat, Campus Pici,Av Humberto Monte,Bloco 914, BR-60455760 Fortaleza, CE, Brazil
关键词
Volume functional; Critical metrics; Compact manifolds; Boundary; SCALAR CURVATURE; DIFFERENTIAL-EQUATION; MANIFOLDS;
D O I
10.1007/s12220-016-9730-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the space of smooth Riemannian structures on compact three-manifolds with boundary that satisfies a critical point equation associated with a boundary value problem, for simplicity, Miao-Tam critical metrics. We provide an estimate to the area of the boundary of Miao-Tam critical metrics on compact three-manifolds. In addition, we obtain a Bochner type formula which enables us to show that a Miao-Tam critical metric on a compact three-manifold with positive scalar curvature must be isometric to a geodesic ball in S-3.
引用
收藏
页码:1530 / 1547
页数:18
相关论文
共 50 条