Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems

被引:21
|
作者
Mao, Yawen [1 ,2 ]
Ding, Feng [1 ,3 ]
Alsaedi, Ahmed [3 ]
Hayat, Tasawar [3 ,4 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[4] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
基金
中国国家自然科学基金;
关键词
Parameter estimation; Recursive identification; Nonlinear system; Adaptive filtering; Multi-innovation identification theory; STOCHASTIC GRADIENT ALGORITHM; IDENTIFICATION ALGORITHM; RECURSIVE-IDENTIFICATION; STRATEGY;
D O I
10.1016/j.sigpro.2016.05.009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the parameter estimation problems of the Hammerstein nonlinear systems using the adaptive filtering technique. A linear filter based recursive least squares (LF-RLS) identification algorithm with good convergence properties and high parameter estimation accuracy is proposed by filtering the input-output data. A linear filter based multi-innovation stochastic gradient (LF-MISG) algorithm is proposed by the innovation expansion, in order to improve the computational efficiency of the LF-RLS algorithm. Furthermore, a time-varying factor is introduced in the linear filter to improve the convergence speed of the LF-MISG algorithm. The efficiency of the proposed algorithms are shown in comparison with the conventional identification algorithms. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 50 条
  • [31] Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters
    Tyukin, Ivan Y.
    Steur, Erik
    Nijmeijer, Henk
    van Leeuwen, Cees
    AUTOMATICA, 2013, 49 (08) : 2409 - 2423
  • [32] TWO-STAGE COUPLED ADAPTIVE FILTERING ALGORITHMS OF PARAMETER AND STATE ESTIMATION FOR MULTIPLE TIME DELAY SYSTEMS.
    Deng, Zili
    Wang, Jianguo
    1600, (07):
  • [33] Global Parameter Estimation of Hammerstein Systems with Polynomial Nonlinearity
    Chen, Cheng-ho
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, SIMULATION AND MODELLING (AMSM 2017), 2017, 162 : 196 - 201
  • [34] Hierarchical Parameter Estimation for Wiener-Hammerstein Systems
    Ghanmi, Afef
    Salhi, Houda
    Elloumi, Mourad
    Kamoun, Samira
    PROCEEDINGS OF THE 2020 17TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD 2020), 2020, : 115 - 121
  • [35] Fixed-Time Adaptive Parameter Estimation for Hammerstein Systems Subject to Dead-Zone
    He, Haoran
    Na, Jing
    Wu, Jiande
    Huang, Yingbo
    Xing, Yashan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (04) : 3862 - 3872
  • [36] Decomposition based recursive least squares parameter estimation for Hammerstein nonlinear controlled autoregressive systems
    Chen, Huibo
    Ding, Feng
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2436 - 2441
  • [37] Adaptive minimax filtering in the problem of the estimation of states of nonlinear dynamic systems
    Tertychnyi-Dauri, VY
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2002, 41 (02) : 242 - 251
  • [38] Parameter estimation of nonlinear systems in noisy environments using genetic algorithms
    Sheta, AF
    DeJong, K
    PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 1996, : 360 - 365
  • [39] Parameter estimation of Wiener-Hammerstein models via genetic algorithms
    Emara-Shabaik, H
    Abdel-Magid, YL
    Al-Ajmi, KH
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2000, 25 (1C) : 49 - 61
  • [40] ON THE ADAPTIVE-CONTROL OF JUMP PARAMETER-SYSTEMS VIA NONLINEAR FILTERING
    CAINES, PE
    ZHANG, JF
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (06) : 1758 - 1777