Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems

被引:21
|
作者
Mao, Yawen [1 ,2 ]
Ding, Feng [1 ,3 ]
Alsaedi, Ahmed [3 ]
Hayat, Tasawar [3 ,4 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[4] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
基金
中国国家自然科学基金;
关键词
Parameter estimation; Recursive identification; Nonlinear system; Adaptive filtering; Multi-innovation identification theory; STOCHASTIC GRADIENT ALGORITHM; IDENTIFICATION ALGORITHM; RECURSIVE-IDENTIFICATION; STRATEGY;
D O I
10.1016/j.sigpro.2016.05.009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the parameter estimation problems of the Hammerstein nonlinear systems using the adaptive filtering technique. A linear filter based recursive least squares (LF-RLS) identification algorithm with good convergence properties and high parameter estimation accuracy is proposed by filtering the input-output data. A linear filter based multi-innovation stochastic gradient (LF-MISG) algorithm is proposed by the innovation expansion, in order to improve the computational efficiency of the LF-RLS algorithm. Furthermore, a time-varying factor is introduced in the linear filter to improve the convergence speed of the LF-MISG algorithm. The efficiency of the proposed algorithms are shown in comparison with the conventional identification algorithms. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 50 条
  • [1] Filtering based least squares parameter estimation algorithms for Hammerstein nonlinear CARMA systems
    Mao, Yawen
    Ding, Feng
    Pan, Jian
    Ding, Wenfang
    Wan, Xiangkui
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 574 - 579
  • [2] Parameter estimation algorithms for multivariable Hammerstein CARMA systems
    Wang, Dongqing
    Ding, Feng
    INFORMATION SCIENCES, 2016, 355 : 237 - 248
  • [3] Adaptive filtering scheme for parameter identification of nonlinear Wiener-Hammerstein systems and its application
    Li, Linwei
    Ren, Xuemei
    INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (10) : 2490 - 2504
  • [4] Weighted Parameter Estimation for Hammerstein Nonlinear ARX Systems
    Ding, Jie
    Cao, Zhengxin
    Chen, Jiazhong
    Jiang, Guoping
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (04) : 2178 - 2192
  • [5] Weighted Parameter Estimation for Hammerstein Nonlinear ARX Systems
    Jie Ding
    Zhengxin Cao
    Jiazhong Chen
    Guoping Jiang
    Circuits, Systems, and Signal Processing, 2020, 39 : 2178 - 2192
  • [6] Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms
    Naveed Ishtiaq Chaudhary
    Muhammad Asif Zahoor Raja
    Nonlinear Dynamics, 2015, 79 : 1385 - 1397
  • [7] Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms
    Chaudhary, Naveed Ishtiaq
    Raja, Muhammad Asif Zahoor
    NONLINEAR DYNAMICS, 2015, 79 (02) : 1385 - 1397
  • [8] Decoupled Parameter Estimation Methods for Hammerstein Systems by Using Filtering Technique
    Wang, Dongqing
    Zhang, Zhen
    Xue, Bingqiang
    IEEE ACCESS, 2018, 6 : 66612 - 66620
  • [9] Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory
    Ji, Yan
    Cao, Jinde
    MATHEMATICS, 2022, 10 (03)
  • [10] Multi-innovation gradient parameter estimation algorithms for closed-loop Hammerstein nonlinear systems
    Xu, Ling
    Shen, Bingbing
    Ding, Feng
    Wang, Dongqing
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 152 - 157