Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems

被引:21
作者
Mao, Yawen [1 ,2 ]
Ding, Feng [1 ,3 ]
Alsaedi, Ahmed [3 ]
Hayat, Tasawar [3 ,4 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[4] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
基金
中国国家自然科学基金;
关键词
Parameter estimation; Recursive identification; Nonlinear system; Adaptive filtering; Multi-innovation identification theory; STOCHASTIC GRADIENT ALGORITHM; IDENTIFICATION ALGORITHM; RECURSIVE-IDENTIFICATION; STRATEGY;
D O I
10.1016/j.sigpro.2016.05.009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the parameter estimation problems of the Hammerstein nonlinear systems using the adaptive filtering technique. A linear filter based recursive least squares (LF-RLS) identification algorithm with good convergence properties and high parameter estimation accuracy is proposed by filtering the input-output data. A linear filter based multi-innovation stochastic gradient (LF-MISG) algorithm is proposed by the innovation expansion, in order to improve the computational efficiency of the LF-RLS algorithm. Furthermore, a time-varying factor is introduced in the linear filter to improve the convergence speed of the LF-MISG algorithm. The efficiency of the proposed algorithms are shown in comparison with the conventional identification algorithms. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 45 条
  • [1] A Markov Chain Monte Carlo Approach to Nonlinear Parametric System Identification
    Bai, Er-Wei
    Ishii, Hideaki
    Tempo, Roberto
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2542 - 2546
  • [2] Cao X., 2016, IEEE T NEURAL NETW L
  • [3] Design of fractional adaptive strategy for input nonlinear Box-Jenkins systems
    Chaudhary, Naveed Ishtiaq
    Raja, Muhammad Asif Zahoor
    [J]. SIGNAL PROCESSING, 2015, 116 : 141 - 151
  • [4] Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle
    Chen, Huibo
    Xiao, Yongsong
    Ding, Feng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 1202 - 1210
  • [5] Identification of Hammerstein systems with continuous nonlinearity
    Chen, Jing
    Wang, Xiuping
    [J]. INFORMATION PROCESSING LETTERS, 2015, 115 (11) : 822 - 827
  • [6] Several gradient parameter estimation algorithms for dual-rate sampled systems
    Chen, Jing
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (01): : 543 - 554
  • [7] Ding F., 2014, SYSTEM IDENTIFICATIO
  • [8] Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition
    Ding, Feng
    Wang, Xuehai
    Chen, Qijia
    Xiao, Yongsong
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (09) : 3323 - 3338
  • [9] Auxiliary model based parameter estimation for dual-rate output error systems with colored noise
    Ding, Jie
    Fan, Chunxia
    Lin, Jinxing
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) : 4051 - 4058
  • [10] Goodwin G. C., 1984, Adaptive filtering prediction and control