Local properties of simplicial complexes

被引:0
|
作者
Idzik, Adam [1 ,2 ]
Zapart, Anna [3 ]
机构
[1] Jan Kochanowski Univ, Inst Math, Kielce, Poland
[2] Polish Acad Sci, Inst Comp Sci, PL-00901 Warsaw, Poland
[3] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland
关键词
collapsable <= n-complex; perfect elimination scheme; retractable <= n-complex; SPACES;
D O I
10.1186/1687-1812-2012-11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Retractable, collapsable, and recursively contractible complexes are examined in this article. Two leader election algorithms are presented. The Nowakowski and Rival theorem on the fixed edge property in an infinite tree for simplicial maps is extended to a class of infinite complexes.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Local properties of simplicial complexes
    Adam Idzik
    Anna Zapart
    Fixed Point Theory and Applications, 2012
  • [2] Simplicial complexes of networks and their statistical properties
    Maletic, Slobodan
    Rajkovic, Milan
    Vasiljevic, Danijela
    COMPUTATIONAL SCIENCE - ICCS 2008, PT 2, 2008, 5102 : 568 - 575
  • [3] ALGEBRAIC PROPERTIES OF SPANNING SIMPLICIAL COMPLEXES
    Khosh-Ahang, Fahimeh
    Moradi, Somayeh
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (06) : 1901 - 1916
  • [4] SIMPLICIAL PRODUCTS OF SIMPLICIAL COMPLEXES
    EILENBERG, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 70 - 70
  • [5] Extending simplicial complexes: Topological and combinatorial properties
    Farrokhi, Mohammad
    Shamsian, Alireza
    Pour, Ali Akbar Yazdan
    DISCRETE MATHEMATICS, 2025, 348 (03)
  • [6] ON SUBDIVISIONS OF SIMPLICIAL COMPLEXES - CHARACTERIZING LOCAL H-VECTORS
    CHAN, C
    DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (04) : 465 - 476
  • [7] Simplicial Complexes
    Schmidt, Gunther
    Winter, Michael
    RELATIONAL TOPOLOGY, 2018, 2208 : 155 - 181
  • [8] Shellability of simplicial complexes and simplicial complexes with the free vertex property
    Zhu, Guangjun
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (01) : 181 - 190
  • [9] Simplicial Complexes are Game Complexes
    Faridi, Sara
    Huntemann, Svenja
    Nowakowski, Richard J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [10] SUBSPACES OF SIMPLICIAL COMPLEXES
    CAUTY, R
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1972, 100 (02): : 129 - &