The concave integral over large spaces

被引:56
作者
Lehrer, Ehud [1 ]
Teper, Roee [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
capacity; concave integral; extendability; large core; convergence theorems;
D O I
10.1016/j.fss.2007.11.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates the concave integral for capacities defined over large spaces. We characterize when the integral with respect to capacity v can be represented as the infimum over all integrals with respect to additive measures that are greater than or equal to v. We introduce the notion of loose extendability and study its relation to the concave integral. A non-additive version for the Levi theorem and the Fatou lemma are proven. Finally, we provide several convergence theorems for capacities with large cores. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2130 / 2144
页数:15
相关论文
共 11 条
[1]   Extendable cooperative games [J].
Azrieli, Yaron ;
Lehrer, Ehud .
JOURNAL OF PUBLIC ECONOMIC THEORY, 2007, 9 (06) :1069-1078
[2]  
Choquet G., 1954, ANN I FOURIER GRENOB, V5, P131, DOI [DOI 10.5802/AIF.53, https://doi.org/10.5802/aif.53]
[3]  
Ekeland I., 1976, Convex Analysis and Variational Problems
[4]  
LEHRER E, 2006, PARTIALLY SPEC UNPUB
[5]  
LEHRER E, 2005, EC THEORY IN PRESS
[6]  
Lovasz Laszlo, 1983, Mathematical Programming: The State of the Art, P235, DOI DOI 10.1007/978-3-642-68874-4_10
[7]   SUBJECTIVE-PROBABILITY AND EXPECTED UTILITY WITHOUT ADDITIVITY [J].
SCHMEIDLER, D .
ECONOMETRICA, 1989, 57 (03) :571-587
[8]  
Sharkey W. W., 1982, International Journal of Game Theory, V11, P175, DOI 10.1007/BF01755727
[9]   Lebesgue theorems in non-additive measure theory [J].
Song, JJ ;
Li, J .
FUZZY SETS AND SYSTEMS, 2005, 149 (03) :543-548
[10]  
Torrance G W, 1989, Int J Technol Assess Health Care, V5, P559