Operational approach to Bell inequalities: Application to qutrits

被引:20
作者
Alsina, Daniel [1 ]
Cervera, Alba [1 ]
Goyeneche, Dardo [2 ,3 ,4 ]
Latorre, Jose I. [1 ]
Zyczkowski, Karol [4 ,5 ]
机构
[1] Univ Barcelona, Dept Fis Quant & Astrofis, Av Diagonal 647, E-08028 Barcelona, Spain
[2] Warsaw Univ, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[3] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80233 Gdansk, Poland
[4] Jagiellonian Univ, Inst Phys, Ul Reymonta 4, PL-30059 Krakow, Poland
[5] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
基金
欧洲研究理事会;
关键词
NONLOCALITY; ENTANGLEMENT; VIOLATION; STATES;
D O I
10.1103/PhysRevA.94.032102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work we develop two methods to construct Bell inequalities for multipartite systems. By considering non-Hermitian operators we study Bell inequalities for the cases of three settings, three outcomes, and three to six parties. The maximal value achieved in the framework of quantum theory is computed for subsystems with three levels each. The other technique, based on a mapping from pure entangled states to Bell operators, allows us to construct further multipartite Bell inequalities. As a consequence, we reproduce some known results in a different way and find some multipartite Bell inequalities for systems having three settings and three outcomes per party.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Coincidence Bell inequality for three three-dimensional systems -: art. no. 250404 [J].
Acín, A ;
Chen, JL ;
Gisin, N ;
Kaszlikowski, D ;
Kwek, LC ;
Oh, CH ;
Zukowski, M .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :250404-1
[2]   Quantum nonlocality in two three-level systems -: art. no. 052325 [J].
Acín, A ;
Durt, T ;
Gisin, N ;
Latorre, JI .
PHYSICAL REVIEW A, 2002, 65 (05) :523251-523258
[3]   Experimental test of Mermin inequalities on a five-qubit quantum computer [J].
Alsina, Daniel ;
Ignacio Latorre, Jose .
PHYSICAL REVIEW A, 2016, 94 (01)
[4]  
[Anonymous], 1961, Report CTSL-20
[5]  
[Anonymous], 1964, The Eightfold Way
[6]   A complete set of multidimensional Bell inequalities [J].
Arnault, Francois .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)
[7]   EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS [J].
ASPECT, A ;
DALIBARD, J ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (25) :1804-1807
[8]  
Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[9]   Bell nonlocality [J].
Brunner, Nicolas ;
Cavalcanti, Daniel ;
Pironio, Stefano ;
Scarani, Valerio ;
Wehner, Stephanie .
REVIEWS OF MODERN PHYSICS, 2014, 86 (02) :419-478
[10]   Mermin's n-particle Bell inequality and operators' noncommutativity [J].
Cereceda, JL .
PHYSICS LETTERS A, 2001, 286 (06) :376-382