Strength and tempo of selection revealed in viral gene genealogies

被引:56
作者
Bedford, Trevor [1 ,2 ]
Cobey, Sarah [1 ,2 ]
Pascual, Mercedes [1 ,2 ]
机构
[1] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Howard Hughes Med Inst, Ann Arbor, MI 48109 USA
关键词
INFLUENZA-A H3N2; POSITIVE SELECTION; EPIDEMIOLOGIC DYNAMICS; EVOLUTION; HEMAGGLUTININ; VIRUSES; PHYLODYNAMICS; INFERENCE; HISTORY;
D O I
10.1186/1471-2148-11-220
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: RNA viruses evolve extremely quickly, allowing them to rapidly adapt to new environmental conditions. Viral pathogens, such as influenza virus, exploit this capacity for evolutionary change to persist within the human population despite substantial immune pressure. Understanding the process of adaptation in these viral systems is essential to our efforts to combat infectious disease. Results: Through analysis of simulated populations and sequence data from influenza A (H3N2) and measles virus, we show how phylogenetic and population genetic techniques can be used to assess the strength and temporal pattern of adaptive evolution. The action of natural selection affects the shape of the genealogical tree connecting members of an evolving population, causing deviations from the neutral expectation. The magnitude and distribution of these deviations lends insight into the historical pattern of evolution and adaptation in the viral population. We quantify the degree of ongoing adaptation in influenza and measles virus through comparison of census population size and effective population size inferred from genealogical patterns, finding a 60-fold greater deviation in influenza than in measles. We also examine the tempo of adaptation in influenza, finding evidence for both continuous and episodic change. Conclusions: Our results have important consequences for understanding the epidemiological and evolutionary dynamics of the influenza virus. Additionally, these general techniques may prove useful to assess the strength and pattern of adaptive evolution in a variety of evolving systems. They are especially powerful when assessing selection in fast-evolving populations, where temporal patterns become highly visible.
引用
收藏
页数:16
相关论文
共 44 条
[1]   The influenza virus resource at the national center for biotechnology information [J].
Bao, Yiming ;
Bolotov, Pavel ;
Dernovoy, Dmitry ;
Kiryutin, Boris ;
Zaslavsky, Leonid ;
Tatusova, Tatiana ;
Ostell, Jim ;
Lipman, David .
JOURNAL OF VIROLOGY, 2008, 82 (02) :596-601
[2]   Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2) [J].
Bedford, Trevor ;
Cobey, Sarah ;
Beerli, Peter ;
Pascual, Mercedes .
PLOS PATHOGENS, 2010, 6 (05)
[3]   GenBank [J].
Benson, DA ;
Boguski, MS ;
Lipman, DJ ;
Ostell, J ;
Ouellette, BFF ;
Rapp, BA ;
Wheeler, DL .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :12-17
[4]  
BHATT S, 2011, MOL BIOL EVOLUTION
[5]   The evolution of human influenza A viruses from 1999 to 2006: A complete genome study [J].
Bragstad, Karoline ;
Nielsen, Lars P. ;
Fomsgaard, Anders .
VIROLOGY JOURNAL, 2008, 5 (1)
[6]   Positive selection on the H3 hemagglutinin gene of human influenza virus A [J].
Bush, RM ;
Fitch, WM ;
Bender, CA ;
Cox, NJ .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (11) :1457-1465
[7]   Time lines of infection and disease in human influenza: A review of volunteer challenge studies [J].
Carrat, Fabrice ;
Vergu, Elisabeta ;
Ferguson, Neil M. ;
Lemaitre, Magali ;
Cauchemez, Simon ;
Leach, Steve ;
Valleron, Alain-Jacques .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 167 (07) :775-785
[8]   Global epidemiology of influenza: Past and present [J].
Cox, NJ ;
Subbarao, K .
ANNUAL REVIEW OF MEDICINE, 2000, 51 :407-421
[9]  
Drummond AJ, 2005, MOL BIOL EVOL, V22, P1185, DOI [10.1093/molbev/msi103, 10.1093/molbev/mss075]
[10]   BEAST: Bayesian evolutionary analysis by sampling trees [J].
Drummond, Alexei J. ;
Rambaut, Andrew .
BMC EVOLUTIONARY BIOLOGY, 2007, 7 (1)