Target Localization and Tracking in Noncoherent Multiple-Input Multiple-Output Radar Systems

被引:162
作者
Niu, Ruixin [1 ]
Blum, Rick S. [2 ,3 ]
Varshney, Pramod K. [2 ]
Drozd, Andrew L. [4 ]
机构
[1] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA
[2] Syracuse Univ, Dept Elect & Comp Sci, Ctr Sci & Technol 4 206, Syracuse, NY 13244 USA
[3] Lehigh Univ, Dept Elect & Comp Engn, Packard Lab 304, Bethlehem, PA 18015 USA
[4] ANDRO Computat Solut, Rome, NY 13440 USA
关键词
CRAMER-RAO BOUNDS; MIMO RADAR; VELOCITY ESTIMATION;
D O I
10.1109/TAES.2012.6178073
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
For a noncoherent multiple-input multiple-output (MIMO) radar system, the maximum likelihood estimator (MLE) of the target location and velocity, as well as the corresponding Cramer-Rao lower bound (CRLB) matrix, is derived. MIMO radar's potential in localization and tracking performance is demonstrated by adopting simple Gaussian pulse waveforms. Due to the short duration of the Gaussian pulses, a very high localization performance can be achieved, even when the matched filter ignores the Doppler effect by matching to zero Doppler shift. This leads to significantly reduced complexities for the matched filter and the MLE. Further, two interactive signal processing and tracking algorithms, based on the Kalman filter and the particle filter (PF), respectively, are proposed for noncoherent MIMO radar target tracking. For a system with a large number of transmit/receive elements and a high signal-to-noise ratio (SNR) value, the Kalman filter (KF) is a good choice; while for a system with a small number of elements and a low SNR value, the PF outperforms the KF significantly. In both methods, the tracker provides predictive information regarding the target location, so that the matched filter can match to the most probable target locations, reducing the complexity of the matched filter and improving the tracking performance. Since tracking is performed without detection, the presented approach can be deemed as a track-before-detect approach. It is demonstrated through simulations that the noncoherent MIMO radar provides significant tracking performance improvement over a monostatic phased array radar with high range and azimuth resolutions. Further, the effects of coherent integration of pulses are investigated for both the phased array radar and a hybrid MIMO radar, where only the pulses transmitted and received by colocated transceivers are coherently integrated and the other pulses are combined noncoherently. It is shown that the hybrid MIMO radar achieves significant tracking performance improvement when compared with the phased array radar, by using the extra Doppler information obtained through coherent pulse integration.
引用
收藏
页码:1466 / 1489
页数:24
相关论文
共 32 条
[1]  
[Anonymous], 2001, Sequential Monte Carlo methods in practice
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]   Netted radar sensing [J].
Baker, CJ ;
Hume, AL ;
Baker, CJ .
IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2003, 18 (02) :3-6
[4]  
Bar-Shalom Y., 2004, Estimation with applications to tracking and navigation: Theory algorithms and software
[5]   Target detection and localization using. MIMO radars and sonars [J].
Bekkerman, Ilya ;
Tabrikian, Joseph .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (10) :3873-3883
[6]  
Bliss DW, 2003, CONF REC ASILOMAR C, P54
[7]  
Coutts S, 2006, PR IEEE SEN ARRAY, P390
[8]   Cramer-Rao bounds for estimating range, velocity, and direction with an active array [J].
Dogandzic, A ;
Nehorai, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (06) :1122-1137
[9]   Spatial diversity in radars-models and detection performance [J].
Fishler, E ;
Haimovich, A ;
Blum, RS ;
Cimini, LJ ;
Chizhik, D ;
Valenzuela, RA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (03) :823-838
[10]  
Foschini G. J., 1996, Bell Labs Technical Journal, V1, P41, DOI 10.1002/bltj.2015