Automated Detection of Benign and Malignant in Breast Histopathology Images

被引:0
作者
Baker, Qanita Bani [1 ]
Abu Zaitoun, Toqa [1 ]
Banat, Sajda [1 ]
Eaydat, Eman [1 ]
Alsmirat, Mohammad [1 ]
机构
[1] Jordan Univ Sci & Technol, Comp Sciene Dept, Irbid, Jordan
来源
2018 IEEE/ACS 15TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA) | 2018年
关键词
Digital Pathology; Microscopic Images; Image Segmentation; K-means; Watershed; Image Analysis; Breast Cancer; Benign; Malignant;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Breast cancer detection and classification using histological images play a critical role in the breast cancer diagnosis process. This paper presents a framework for autodetection and classification of breast cancer from microscopic histological images. The images are classified into benign or malignant. The proposed framework involves several steps which include image enhancement, image segmentation, features extraction, and images classification. The proposed framework utilizes a novel combination of K-means clustering and watershed algorithms in the segmentation step. We used K-means clustering to produce an initial segmented image and then we applied the watershed segmentation algorithm. Classification results show that the proposed method effectively detect and classify breast cancer from histological image with accuracy of 70.7% using a proposed Rule-Based classifier and 86.5% using a Decision Tree classifier.
引用
收藏
页数:5
相关论文
共 31 条
  • [1] An evolutionary artificial neural networks approach for breast cancer diagnosis
    Abbass, HA
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2002, 25 (03) : 265 - 281
  • [2] [Anonymous], 2015, J MED ENG
  • [3] [Anonymous], MULTIDISCIPLINAR SEP
  • [4] Axelrod D. E., 2008, CANC INFORM, V6
  • [5] Baker QB, 2017, INT CONF INFORM COMM, P136, DOI 10.1109/IACS.2017.7921960
  • [6] Bautista P. A., 2010, J PATHOLOGY INFORN, V1
  • [7] Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images
    Bejnordi, Babak Ehteshami
    Balkenhol, Maschenka
    Litjens, Geert
    Holland, Roland
    Bult, Peter
    Karssemeijer, Nico
    van der Laak, Jeroen A. W. M.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) : 2141 - 2150
  • [8] Bhargava N., 2013, Int. J. Adv. Res. Comput. Sci. Softw. Eng., V3, P1
  • [9] Breast lesions: Correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis
    Buadu, LD
    Murakami, J
    Murayama, S
    Hashiguchi, N
    Sakai, S
    Masuda, K
    Toyoshima, S
    Kuroki, S
    Ohno, S
    [J]. RADIOLOGY, 1996, 200 (03) : 639 - 649
  • [10] Automatic detection of invasive ductal carcinoma in whole slide images with Convolutional Neural Networks
    Cruz-Roa, Angel
    Basavanhally, Ajay
    Gonzalez, Fabio
    Gilmore, Hannah
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie
    Tomaszewski, John
    Madabhushi, Anant
    [J]. MEDICAL IMAGING 2014: DIGITAL PATHOLOGY, 2014, 9041