An Efficient Binary Descriptor to Describe Retinal Bifurcation Point for Image Registration

被引:0
作者
Islam, Sarder Tazul [1 ]
Saha, Sajib [2 ]
Rahaman, G. M. Atiqur [1 ]
Dutta, Deep [1 ]
Kanagasingam, Yogesan [2 ]
机构
[1] Khulna Univ, Computat Color & Spectral Image Anal Lab, Comp Sci & Engn Discipline, Khulna, Bangladesh
[2] CSIRO, Australian E Hlth Res Ctr, Perth, WA, Australia
来源
PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I | 2020年 / 11867卷
关键词
Bifurcation point; Binary descriptor; Haar feature; Hamming distance; Image registration; ALGORITHM; ROBUST;
D O I
10.1007/978-3-030-31332-6_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bifurcation points are typically considered as landmark points for retinal image registration. Robust detection, description and accurate matching of landmark points between images are crucial for successful registration of image pairs. This paper introduces a novel descriptor named Binary Descriptor for Retinal Bifurcation Point (BDRBP), so that bifurcation point can be described and matched more accurately. BDRBP uses four patterns that are reminiscent of Haar basis function. It relies on pixel intensity difference among groups of pixels within a patch centering on the bifurcation point to form a binary string. This binary string is the descriptor. Experiments are conducted on publicly available retinal image registration dataset named FIRE. The proposed descriptor has been compared with the state-of-the art Li Chen et al.'s method for bifurcation point description. Experiments show that bifurcation points can be described and matched with an accuracy of 86-90% with BDRBP, whereas, for Li Chen et al.'s method the accuracy is 43-78%.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 17 条
[1]  
Adal KM, 2014, LECT NOTES COMPUT SC, V8545, P93, DOI 10.1007/978-3-319-08554-8_10
[2]   SURF: Speeded up robust features [J].
Bay, Herbert ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 :404-417
[3]   BRIEF: Binary Robust Independent Elementary Features [J].
Calonder, Michael ;
Lepetit, Vincent ;
Strecha, Christoph ;
Fua, Pascal .
COMPUTER VISION-ECCV 2010, PT IV, 2010, 6314 :778-792
[4]   A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina [J].
Can, A ;
Stewart, CV ;
Roysam, B ;
Tanenbaum, HL .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (03) :347-364
[5]   Retinal image registration using topological vascular tree segmentation and bifurcation structures [J].
Chen, Li ;
Huang, Xiaotong ;
Tian, Jing .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2015, 16 :22-31
[6]  
Fang B, 2004, IEEE IMAGE PROC, P1089
[7]   Colour retinal fundus image registration by selecting stable extremum points in the scale-invariant feature transform detector [J].
Ghassabi, Zeinab ;
Shanbehzadeh, Jamshid ;
Mohammadzadeh, Ali ;
Ostadzadeh, Seyed Shervin .
IET IMAGE PROCESSING, 2015, 9 (10) :889-900
[8]  
Hernandez-Matas C., 2017, Model. Artif. Intell. Ophthalmol, V1, P16, DOI DOI 10.35119/MAIO.V1I4.42
[9]  
Hernandez-Matas C, 2015, IEEE ENG MED BIO, P5650, DOI 10.1109/EMBC.2015.7319674
[10]  
Li Chen, 2011, 2011 18th IEEE International Conference on Image Processing (ICIP 2011), P2169, DOI 10.1109/ICIP.2011.6116041