Multiple positive solutions for a class of (2, p)-Laplacian equation

被引:3
作者
Li, Fuyi [1 ]
Rong, Ting [1 ]
Liang, Zhanping [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
NODAL SOLUTIONS; (P; Q)-EQUATIONS;
D O I
10.1063/1.5050030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we investigate the (2, p)-Laplacian equation -Delta u - Delta(p)u = f (x, u) in Omega with the boundary condition u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-N, p > 2, and the nonlinearity f has extension property at both the zero and infinity points. We observe that the above equation admits at least two positive solutions, owing to the mountain pass theorem and Ekeland's variational principle. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 21 条
[1]  
Aizicovici S, 2015, T AM MATH SOC, V367, P7343
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   Solitons in several space dimensions: Derrick's problem and infinitely many solutions [J].
Benci, V ;
D'Avenia, P ;
Fortunato, D ;
Pisani, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (04) :297-324
[4]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22
[5]   The beginning of the Fucik spectrum for the p-Laplacian [J].
Cuesta, M ;
de Figueiredo, D ;
Gossez, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) :212-238
[6]  
Filippakis M. E., 2018, ELECTRON J DIFFER EQ, V24, P1
[7]   Asymmetric (p, 2)-equations with double resonance [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
[8]   DIRICHLET (p, q)-EQUATIONS AT RESONANCE [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) :2037-2060
[9]  
Liang Z., 2017, ELECTRON J DIFFER EQ, V9, P185
[10]  
Liang ZP, 2016, BOUND VALUE PROBL, DOI 10.1186/s13661-016-0567-x