Black hole mass threshold from nonsingular quantum gravitational collapse

被引:108
作者
Bojowald, M [1 ]
Goswami, R
Maartens, R
Singh, P
机构
[1] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
[2] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India
[3] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England
[4] Penn State Univ, Inst Gravitat Phys & Geometry, University Pk, PA 16802 USA
关键词
D O I
10.1103/PhysRevLett.95.091302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum gravity is expected to remove the classical singularity that arises as the end state of gravitational collapse. To investigate this, we work with a toy model of a collapsing homogeneous scalar field. We show that nonperturbative semiclassical effects of loop quantum gravity cause a bounce and remove the black hole singularity. Furthermore, we find a critical threshold scale below which no horizon forms: quantum gravity may exclude very small astrophysical black holes.
引用
收藏
页数:4
相关论文
共 21 条
[1]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[2]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[3]   Dynamical horizons: Energy, angular momentum, fluxes, and balance laws [J].
Ashtekar, A ;
Krishnan, B .
PHYSICAL REVIEW LETTERS, 2002, 89 (26) :1-261101
[4]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[5]   Coordinate time dependence in quantum gravity [J].
Bojowald, M ;
Singh, P ;
Skirzewski, A .
PHYSICAL REVIEW D, 2004, 70 (12) :124022-1
[6]   Spherically symmetric quantum geometry: states and basic operators [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :3733-3753
[7]   Loop quantum cosmology, boundary proposals, and inflation [J].
Bojowald, M ;
Vandersloot, K .
PHYSICAL REVIEW D, 2003, 67 (12)
[8]   Inflation from quantum geometry [J].
Bojowald, M .
PHYSICAL REVIEW LETTERS, 2002, 89 (26)
[9]   Isotropic loop quantum cosmology [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (10) :2717-2741
[10]   Quantization ambiguities in isotropic quantum geometry [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (20) :5113-5129