Internal surface electric charge characterization of mesoporous silica

被引:21
作者
Sen, Tumcan [1 ]
Barisik, Murat [1 ]
机构
[1] Izmir Inst Technol, Dept Mech Engn, TR-35430 Izmir, Turkey
关键词
NANOFILTRATION MEMBRANES; POROUS SILICA; NANOPARTICLES; DIFFUSION; SIZE; ELECTROLYTES; POTENTIALS; RANGE;
D O I
10.1038/s41598-018-36487-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mesoporous silica is an emerging technology to solve problems of existing and to support projected revolutionary applications ranging from targeted drug delivery to artificial kidney. However, one of the major driving mechanisms, electric charging of internal mesoporous surfaces, has not been characterized yet. In the nanoscale confinements of mesoporous structures made of pore throats and pore voids, surface charges diverge from existing theoretical calculations and show local variation due to two occurrences. First, when the size of pore throat becomes comparable with the thickness of ionic layering forming on throats' surfaces, ionic layers from opposite surfaces overlap so that ionic concentration on the surface becomes different than Boltzmann distribution predicts, and there will no longer be an equilibrium of zero electric potential at pore throat centers. Second, when this non zero potential inside throats becomes different than the potential of pore voids, ionic diffusion from void to throat creates axial ionic variation on surfaces. For such a case, we performed a pore level analysis on mesoporous internal surface charge at various porosities and ionic conditions. Pore parameters strongly affected the average internal charge which we characterized as a function of overlap ratio and porosity, first time in literature. Using this, a phenomenological model was developed as an extension of the existing theory to include nano-effects, to predict the average mesoporous internal surface charge as a function of EDL thickness, pore size and porosity.
引用
收藏
页数:9
相关论文
共 55 条
  • [1] SURFACE CHARGE DEVELOPMENT ON POROUS SILICA IN AQUEOUS-SOLUTION
    ABENDROTH, RP
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1972, 76 (18) : 2547 - +
  • [2] Agboola O, 2015, KOREAN J CHEM ENG, V32, P731
  • [3] Bhattacharyya S., Journal of Fluid Mechanics, V540
  • [4] Charge reversal of moisturous porous silica colloids by take-up of protons
    Boon, Niels
    van Roij, Rene
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 385 : 66 - 72
  • [5] The use of atomic force microscopy to quantify membrane surface electrical properties
    Bowen, WR
    Doneva, TA
    Stoton, JAG
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2002, 201 (1-3) : 73 - 83
  • [6] PROPERTIES OF MICROFILTRATION MEMBRANES - THE SURFACE ELECTROCHEMISTRY OF ANODIC FILM MEMBRANES
    BOWEN, WR
    HUGHES, DT
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1991, 143 (01) : 252 - 265
  • [7] Nano-enhanced reverse osmosis membranes
    Buonomenna, M. G.
    [J]. DESALINATION, 2013, 314 : 73 - 88
  • [8] STUDY OF STREAMING POTENTIALS OF CLEAN AND FOULED ULTRAFILTRATION MEMBRANES
    CAUSSERAND, C
    NYSTROM, M
    AIMAR, P
    [J]. JOURNAL OF MEMBRANE SCIENCE, 1994, 88 (2-3) : 211 - 222
  • [9] Amine-functionalized mesoporous silica for urea adsorption
    Cheah, Wee-Keat
    Sim, Yoke-Leng
    Yeoh, Fei-Yee
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2016, 175 : 151 - 157
  • [10] Pore size and surface chemistry effects on the transport of hydrophobic and hydrophilic solvents through mesoporous γ-alumina and silica MCM-48
    Chowdhury, SR
    Schmuhl, R
    Keizer, K
    ten Elshof, JE
    Blank, DHA
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2003, 225 (1-2) : 177 - 186