On the periodically perturbed logistic equation

被引:15
作者
Grinfeld, M
Knight, PA
Lamba, H
机构
[1] Department of Mathematics, University of Strathclyde, Livingstone Tower, Glasgow G1 1XH
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 24期
关键词
D O I
10.1088/0305-4470/29/24/026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the logistic equation modified by a periodic time dependence. The perturbation introduces bifurcation delays which can be calculated explicitly and we qualitatively explain how the bifurcation diagram deforms as the perturbation is increased.
引用
收藏
页码:8035 / 8040
页数:6
相关论文
共 11 条
[1]  
BAESENS C, 1991, LECT NOTES MATH, V1493
[2]  
Char B.W., 1988, MAPLE REFERENCE MANU
[3]   SYMBOLIC DYNAMICS OF NOISY CHAOS [J].
CRUTCHFIELD, JP ;
PACKARD, NH .
PHYSICA D, 1983, 7 (1-3) :201-223
[4]  
DEMLO W, 1993, ONE DIMENSIONAL DYNA
[5]   CHAOTIC ATTRACTORS IN CRISIS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1982, 48 (22) :1507-1510
[6]  
Holden A.V., 1986, CHAOS
[7]   BIFURCATION STRUCTURE OF THE NONAUTONOMOUS QUADRATIC MAP [J].
KAPRAL, R ;
MANDEL, P .
PHYSICAL REVIEW A, 1985, 32 (02) :1076-1081
[8]  
*MATH WORKS INC, 1993, MATLAB
[9]   BIOLOGICAL POPULATIONS WITH NONOVERLAPPING GENERATIONS - STABLE POINTS, STABLE CYCLES, AND CHAOS [J].
MAY, RM .
SCIENCE, 1974, 186 (4164) :645-647
[10]   THE SUBCRITICAL COLLAPSE OF PREDATOR POPULATIONS IN DISCRETE-TIME PREDATOR-PREY MODELS [J].
NEUBERT, MG ;
KOT, M .
MATHEMATICAL BIOSCIENCES, 1992, 110 (01) :45-66