Infinitely many solutions for magnetic fractional problems with critical Sobolev-Hardy nonlinearities

被引:7
作者
Yang, Libo [1 ,2 ]
An, Tianqing [1 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Huaiyin Inst Technol, Fac Math & Phys, Huaian 223003, Peoples R China
关键词
critical Sobolev exponent; Degenerate Kirchhoff equation; fractional magnetic operator; symmetric mountain pass theorem; KIRCHHOFF TYPE PROBLEM; MULTIPLICITY; EQUATIONS; BOURGAIN; THEOREM; BREZIS;
D O I
10.1002/mma.5317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of infinitely many solutions of the following degenerate magnetic fractional problem involving critical Sobolev-Hardy nonlinearities: M([u](2)(s,A))(-Delta)(A)(s)u = lambda f (x, vertical bar u vertical bar)u + vertical bar u vertical bar(2)(*(alpha)-2)(s)u/vertical bar x vertical bar(alpha), in R-N, where s is an element of(0, 1), N > 2s, 2(s)(*)(alpha) = 2(N-alpha)/N-2s is the fractional Hardy-Sobolev critical exponent with alpha is an element of[0, 2s), lambda is a positive real parameter, M : R-0(+) -> R-0(+) is a Kirchhoff function, A : R-N -> R-N is a magnetic potential function, and (-Delta)(A)(s) is the fractional magnetic operator. By using the new version of symmetric mountain pass theorem of Kajikiya, we prove that the problem admits infinitely many solutions for the suitable value of lambda.
引用
收藏
页码:9607 / 9617
页数:11
相关论文
共 25 条
  • [1] [Anonymous], 1986, Critical point theory and its applications
  • [2] [Anonymous], 1964, Topological Methods in the Theory of Nonlinear Integral Equations
  • [3] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [4] Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations
    Caponi, Maicol
    Pucci, Patrizia
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) : 2099 - 2129
  • [5] GROUND STATES FOR FRACTIONAL MAGNETIC OPERATORS
    d'Avenia, Pietro
    Squassina, Marco
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (01) : 1 - 24
  • [6] Semiclassical stationary states for nonlinear Schrodinger equations under a strong external magnetic field
    Di Cosmo, Jonathan
    Van Schaftingen, Jean
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (02) : 596 - 627
  • [7] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [8] Multiplicity results for magnetic fractional problems
    Fiscella, Alessi
    Pinamonti, Andrea
    Vecchi, Eugenio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (08) : 4617 - 4633
  • [9] Kirchhoff-Hardy Fractional Problems with Lack of Compactness
    Fiscella, Alessio
    Pucci, Patrizia
    [J]. ADVANCED NONLINEAR STUDIES, 2017, 17 (03) : 429 - 456
  • [10] Existence of entire solutions for Schrodinger-Hardy systems involving two fractional operators
    Fiscella, Alessio
    Pucci, Patrizia
    Saldi, Sara
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 158 : 109 - 131