Automatic Recognition of Ocular Surface Diseases on Smartphone Images Using Densely Connected Convolutional Networks

被引:5
作者
Chen, Rong [1 ]
Zeng, Wankang [1 ]
Fan, Wenkang [1 ]
Lai, Fang [1 ]
Chen, Yinran [1 ]
Lin, Xiang [2 ]
Tang, Liying [2 ]
Ouyang, Weijie [2 ]
Liu, Zuguo [2 ]
Luo, Xiongbiao [1 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen, Peoples R China
[2] Xiamen Univ, Sch Med, Xiamen 361102, Peoples R China
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
关键词
D O I
10.1109/EMBC46164.2021.9630359
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Ocular surface disorder is one of common and prevalence eye diseases and complex to be recognized accurately. This work presents automatic classification of ocular surface disorders in accordance with densely connected convolutional networks and smartphone imaging. We use various smartphone cameras to collect clinical images that contain normal and abnormal, and modify end-to-end densely connected convolutional networks that use a hybrid unit to learn more diverse features, significantly reducing the network depth, the total number of parameters and the float calculation. The validation results demonstrate that our proposed method provides a promising and effective strategy to accurately screen ocular surface disorders. In particular, our deeply learned smartphone photographs based classification method achieved an average automatic recognition accuracy of 90.6%, while it is conveniently used by patients and integrated into smartphone applications for automatic patient-self screening ocular surface diseases without seeing a doctor in person in a hospital.
引用
收藏
页码:2786 / 2789
页数:4
相关论文
共 16 条
[1]   Dry Eye Syndrome Preferred Practice Pattern® [J].
Akpek, Esen K. ;
Amescua, Guillermo ;
Farid, Marjan ;
Garcia-Ferrer, Francisco J. ;
Lin, Amy ;
Rhee, Michelle K. ;
Varu, Divya M. ;
Musch, David C. ;
Dunn, Steven P. ;
Mah, Francis S. .
OPHTHALMOLOGY, 2019, 126 (01) :P286-P334
[2]   TFOS DEWS II Report Executive Summary [J].
Craig, Jennifer P. ;
Nelson, J. Daniel ;
Azar, Dimitri T. ;
Belmonte, Carlos ;
Bron, Anthony J. ;
Chauhan, Sunil K. ;
de Paiva, Cintia S. ;
Gomes, Jose A. P. ;
Hammitt, Katherine M. ;
Jones, Lyndon ;
Nichols, Jason J. ;
Nichols, Kelly K. ;
Novack, Gary D. ;
Stapleton, Fiona J. ;
Willcox, Mark D. P. ;
Wolffsohn, James S. ;
Sullivan, David A. .
OCULAR SURFACE, 2017, 15 (04) :802-812
[3]   Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited] [J].
de Boer, Johannes F. ;
Leitgeb, Rainer ;
Wojtkowski, Maciej .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (07) :3248-3280
[4]  
Gellrich Marcus-Matthias, 2014, SLIT LAMP APPLICATIO
[5]  
Han Kai, 2019, IEEE C COMP VIS PATT
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]  
Howard Andrew G, 2017, arXiv
[8]   Data-Driven Scheduling for Improving Patient Efficiency in Ophthalmology Clinics [J].
Hribar, Michelle R. ;
Huang, Abigail E. ;
Goldstein, Isaac H. ;
Reznick, Leah G. ;
Kuo, Annie ;
Loh, Allison R. ;
Karr, Daniel J. ;
Wilson, Lorri ;
Chiang, Michael F. .
OPHTHALMOLOGY, 2019, 126 (03) :347-354
[9]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[10]  
Ioffe S., 2015, INT C MACHINE LEARNI, P448