VERTEX COLORINGS WITHOUT RAINBOW SUBGRAPHS

被引:3
作者
Goddard, Wayne [1 ]
Xu, Honghai [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29631 USA
关键词
coloring; rainbow; monochromatic; forbidden; path; PLANE GRAPHS;
D O I
10.7151/dmgt.1896
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a coloring of the vertices of a graph G, we say a subgraph is rainbow if its vertices receive distinct colors. For a graph F, we define the F-upper chromatic number of G as the maximum number of colors that can be used to color the vertices of G such that there is no rainbow copy of F. We present some results on this parameter for certain graph classes. The focus is on the case that F is a star or triangle. For example, we show that the K-3-upper chromatic number of any maximal outerplanar graph on n vertices is [n/2] + 1.
引用
收藏
页码:989 / 1005
页数:17
相关论文
共 14 条
[1]  
Axenovich M, 2008, ELECTRON J COMB, V15
[2]  
Bujtas Cs., 2010, Discuss. Math. Graph Theory, V30, P393, DOI DOI 10.7151/DMGT.1502
[3]   Vertex coloring without large polychromatic stars [J].
Bujtas, Csilla ;
Sampathkumar, E. ;
Tuza, Zsolt ;
Dominic, Charles ;
Pushpalatha, L. .
DISCRETE MATHEMATICS, 2012, 312 (14) :2102-2108
[4]   Non-monochromatic non-rainbow colourings of σ-hypergraphs [J].
Caro, Yair ;
Lauri, Josef .
DISCRETE MATHEMATICS, 2014, 318 :96-104
[5]   Non-Rainbow Colorings of 3-, 4-and 5-Connected Plane Graphs [J].
Dvorak, Zdenek ;
Kral, Daniel ;
Skrekovski, Riste .
JOURNAL OF GRAPH THEORY, 2010, 63 (02) :129-145
[6]   Signed domination in regular graphs [J].
Favaron, O .
DISCRETE MATHEMATICS, 1996, 158 (1-3) :287-293
[7]   Rainbow Generalizations of Ramsey Theory: A Survey [J].
Fujita, Shinya ;
Magnant, Colton ;
Ozeki, Kenta .
GRAPHS AND COMBINATORICS, 2010, 26 (01) :1-30
[8]  
Goddard W., 2014, Congr. Numer, V219, P161
[9]   WORM COLORINGS [J].
Goddard, Wayne ;
Wash, Kirsti ;
Xu, Honghai .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (03) :571-584
[10]   Edge colorings of complete graphs without tricolored triangles [J].
Gyárfás, A ;
Simonyi, G .
JOURNAL OF GRAPH THEORY, 2004, 46 (03) :211-216