Measurement of the dispersion of a liquid analyte using surface plasmon resonance: a theoretical approach

被引:0
作者
Chylek, J. [1 ]
Bezdekova, I [1 ]
Ciprian, D. [1 ]
Hlubina, P. [1 ,2 ]
机构
[1] Tech Univ Ostrava, Dept Phys, 17 Listopadu 15, Ostrava 70833, Czech Republic
[2] Tech Univ Ostrava, Reg Mat Sci & Technol Ctr, 17 Listopadu 15, Ostrava 70833, Czech Republic
来源
OPTICAL SENSING AND DETECTION V | 2018年 / 10680卷
关键词
surface plasmon resonance; Kretschmann configuration; resonance wavelength; analyte; refractive index; dispersion; water; ethanol; SPECTRAL INTERFEROMETRY; REFRACTIVE-INDEX; PHASE;
D O I
10.1117/12.2305916
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A theoretical study of a spectral method based on surface plasmon resonance (SPR) to measure the dispersion of a liquid analyte is presented. A setup with an SF10 glass prism and a gold coated SF10 slide is proposed and the SPR phenomenon in the Kretschmann configuration is analyzed in the spectral domain. Using the material dispersion of the SPR structure and the analyte, the resonance wavelength for the ratio of the reflectances of p- and s-polarized waves is determined for different angles of incidence. Using two new procedures, these theoretical values are utilized in obtaining the refractive index of the analyte as a function of the resonance wavelength. The dispersion of the analyte thus retrieved is compared with the one used in the model and it is concluded that one of the procedures is more accurate than the other. The applicability of the new method is demonstrated for two different analytes, water and ethanol, and the measurement range is specified.
引用
收藏
页数:7
相关论文
共 17 条
[1]   Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region [J].
Daimon, Masahiko ;
Masumura, Akira .
APPLIED OPTICS, 2007, 46 (18) :3811-3820
[2]   Spectral and Angular Responses of Surface Plasmon Resonance Based on the Kretschmann Prism Configuration [J].
Gwon, Hyuk Rok ;
Lee, Seong Hyuk .
MATERIALS TRANSACTIONS, 2010, 51 (06) :1150-1155
[3]   Spectral interferometry-based surface plasmon resonance sensor [J].
Hlubina, P. ;
Duliakova, M. ;
Kadulova, M. ;
Ciprian, D. .
OPTICS COMMUNICATIONS, 2015, 354 :240-245
[4]   Spectral Phase Shift of Surface Plasmon Resonance in the Kretschmann Configuration: Theory and Experiment [J].
Hlubina, Petr ;
Ciprian, Dalibor .
PLASMONICS, 2017, 12 (04) :1071-1078
[5]  
Homola J, 2006, SPRINGER SER CHEM SE, V4, P1, DOI 10.1007/b100321
[6]   Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing [J].
Kabashin, Andrei V. ;
Patskovsky, Sergiy ;
Grigorenko, Alexander N. .
OPTICS EXPRESS, 2009, 17 (23) :21191-21204
[7]   RADIATIVE DECAY OF NON RADIATIVE SURFACE PLASMONS EXCITED BY LIGHT [J].
KRETSCHM.E ;
RAETHER, H .
ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1968, A 23 (12) :2135-&
[8]   White-light spectral interferometry for surface plasmon resonance sensing applications [J].
Ng, Siu Pang ;
Wu, Chi Man Lawrence ;
Wu, Shu Yuen ;
Ho, Ho Pui .
OPTICS EXPRESS, 2011, 19 (05) :4521-4527
[9]   Theory of surface plasmons and surface-plasmon polaritons [J].
Pitarke, J. M. ;
Silkin, V. M. ;
Chulkov, E. V. ;
Echenique, P. M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (01) :1-87
[10]  
Polyanskiy M.N., 2016, Refractive index database