The discrete evolution model of Bak and Sneppen is conjugate to the classical contact process

被引:5
作者
Bandt, C [1 ]
机构
[1] Univ Greifswald, Inst Math, D-17487 Greifswald, Germany
关键词
contact process; cellular automata; thinning; self-organized criticality; evolution model;
D O I
10.1007/s10955-005-5965-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two fundamental models of critical phenomena are connected. We show that the discrete Bak-Sneppen evolution model is conjugate to the classical contact process. This holds in discrete and continuous time, on all graphs and for random as well as for deterministic choice of neighbors. Thus the extensive theory for the contact process applies to the discrete Bak-Sneppen model, too.
引用
收藏
页码:685 / 693
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 1999, Classical and spatial stochastic processes
[3]   PUNCTUATED EQUILIBRIUM AND CRITICALITY IN A SIMPLE-MODEL OF EVOLUTION [J].
BAK, P ;
SNEPPEN, K .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :4083-4086
[4]   The geometry of a parameter space of interacting particle systems [J].
Bandt, C .
JOURNAL OF STATISTICAL PHYSICS, 1999, 96 (3-4) :883-906
[5]  
Barbay J., 2001, P 12 ANN ACM SIAM S
[6]   SIMPLE-MODEL OF SELF-ORGANIZED BIOLOGICAL EVOLUTION [J].
DEBOER, J ;
DERRIDA, B ;
FLYVBJERG, H ;
JACKSON, AD ;
WETTIG, T .
PHYSICAL REVIEW LETTERS, 1994, 73 (06) :906-909
[7]   THE BAK-SNEPPEN MODEL FOR PUNCTUATED EVOLUTION [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1995, 200 (3-4) :277-282
[8]   CONTACT INTERACTIONS ON A LATTICE [J].
HARRIS, TE .
ANNALS OF PROBABILITY, 1974, 2 (06) :969-988
[9]   The anisotropic Bak-Sneppen model [J].
Head, DA ;
Rodgers, GJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (17) :3977-3988
[10]  
Liggett T.M., 1999, STOCHASTIC INTERACTI