Kernel parameter optimization for semi-supervised fuzzy clustering with pairwise constraints

被引:0
作者
Na, Wang [1 ]
Xia, Li [1 ]
机构
[1] Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China
来源
CHINESE JOURNAL OF ELECTRONICS | 2008年 / 17卷 / 02期
关键词
semi-supervised fuzzy clustering; kernel parameter optimization; pairwise constraints;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A critical problem related to semi-supervised kernel clustering is the selection of an optimal kernel parameter since the value of parameter has significant impact on the performance of clustering. In this paper, we construct a semi-supervised kernel fuzzy c-means clustering algorithm in terms of pairwise constraints to obtain an optimal kernel parameter. Combined with kernel parameter initialization directly using the given constraints, a new optimization process is derived to automatically estimate the optimal parameter of kernel function. Experimental results show that, with the effective use of pairwise constraints, the proposed approach works well for the estimation of kernel parameter in semi-supervised kernel fuzzy c-means clustering.
引用
收藏
页码:297 / 300
页数:4
相关论文
共 11 条
[1]  
[Anonymous], INT C KNOWL DISC DAT, DOI DOI 10.1145/1014052.1014062
[2]  
Basu S, 2004, SIAM PROC S, P333
[3]  
Bilenko M., 2004, P 21 INT C MACH LEAR, P11, DOI [DOI 10.1145/1015330.1015360, 10.1145/1015330.1015360]
[4]  
Blake C.L., 1998, UCI repository of machine learning databases
[5]  
Kulis B., 2005, P 22 INT C MACH LEAR, P457, DOI DOI 10.1145/1102351.1102409
[6]  
Wagstaff K., 2001, ICML, V1, P577, DOI DOI 10.1109/TPAMI.2002.1017616
[7]  
YAN B, 2006, ISETR0609 G MAS U
[8]  
YAN B, 2006, 17 EUR C MACH LEARN, P18
[9]  
Zhang D.-Q., 2003, P INT C ARTIFICIAL N, V122, P122
[10]  
Zhang DQ, 2004, LECT NOTES COMPUT SC, V3316, P1229